2016 QBS Request for Statement of Interest (SOI) Silver Glen Road over Otter Creek Bridge Rehabilitation/Replacement Section Number 16-00115-02-BR

The Kane County Division of Transportation is in need of professional services from a qualified engineering firm to provide engineering services as detailed in the attached preliminary scope of work.

Statements of Interest received will be used by the County to determine a preferred consultant for the work.

The attached *Bridge Inspection Report* provides a summary of the current bridge conditions and should be used in determining alternatives to be provided in the Phase I and Phase II services required.

At this time the County anticipates starting this work as soon as possible.

The Statement of Interest shall be limited to 2 pages, must be submitted electronically via **KDOT QBS** no later than 4:00 pm on May 20th, 2016, and should be addressed to Candi Thomas, P.E., Senior Project Manager. The SOI shall be submitted in a PDF format viewable with the latest version of Adobe Reader.

If you plan to enter into a joint venture with another firm for this project please note this on your Statement of Interest, including the name of the firm you are entering into a joint venture with for this project.

For more information regarding the 2-page SOI, such as content and format of these items, please reference the QBS document found at: <u>KQBS - Professional Services Procurement Process</u>.

Any questions on the project may be emailed to Candi Tomas.

A Statement of Interest (SOI) received after the above noted deadline will not be used as part of our consultant selection process.

Candi Thomas, P.E. Senior Project Manager Kane County Division of Transportation 41W011 Burlington Road St. Charles, Illinois 60175 thomascandance@co.kane.il.us

Please refer to the following Preliminary Scope of work for more information on this project.

Silver Glen Road over Otter Creek Preliminary Scope of Work

Project Description/Scope of Services:

This project consists of Phase I & Phase II design services to rehabilitate/replace the bridge/superstructure along Silver Glen Road over Otter Creek (045-3122).

Please see attached references:

- 2015 Bridge Report

This project is funded through STP-Bridge.

STRUCTURE NO. 045-3122

Silver Glen Road / F.A.P. 0526 over

Otter Creek

February 19, 2016

Prepared for:

Kane County Division of Transportation

Prepared by:

123 North Wacker Drive, Suite 900 Chicago, Illinois 60606 312.704.9300 • www.collinsengr.com

STRUCTURE INVENTORY DATA

INSPECTION INFORMATION

Date:	February 19, 2016
Weather:	55° F, Sunny
Note:	-

STRUCTURE INFORMATION

Structure Number:	045-3122
District:	1
County:	Kane
Township:	St. Charles
Feature Carried:	Silver Glen Road / F.A.P. 0526
Feature Crossed:	Otter Creek
Туре:	Precast Prestressed Concrete Deck Beams
Span Arrangement:	Two simple spans (45'-5 1/2", 45'-5 1/2")
Length:	93'-5" back-to-back of abutments
Width:	40'-0" out-to-out of deck
	40'-0" face-to-face of rail
	8'-0" out-to-out of deck & face-to-face of rail for
	separate pedestrian bridge supported on widened
	abutments of the main roadway structure
Skew:	0°
Abutments:	Concrete Pile/Metal Shell Pile Supported Stub
	Abutment
Piers:	Individually Encased Pile Bent
Year Constructed:	1984
Year/s Reconstructed:	1999 – Widened abutments and added pedestrian bridge

ROADWAY INFORMATION

ADT (2014):	6550– IDOT Master Structure Report
ADTT (2014):	4% – IDOT Master Structure Report
Inventory Rating RF:	0.741 – Collins Engineers, Inc.
	1.000 – IDOT Master Structure Report
Operating Rating RF:	1.236 – Collins Engineers, Inc.
	1.365 – IDOT Master Structure Report
Existing Clear Width:	40'-0"
Width to Remain in Place:	28'-0"
Clear Roadway Bridge Width:	40'-0"

INSPECTION HISTORY (NBIS RATINGS)

Year	<u>Deck:</u>	<u>Super:</u>	<u>Sub:</u>
2002	8	8	7
2006	7	7	7
2010	5	5	7
2012	5	5	5
2014	5	5	5
2016	4	4	5

STRUCTURE CONDITION FINDINGS

APPROACH ROADWAY

The approach roadway consists of HMA surface and shoulders. The approach roadways have been resurfaced since the previous inspection and are in **good condition** (see Photo No. 3 & 4).

• Transverse cracks up to 1/4 in. wide are present in the roadway near the abutments (see Photo No. 5).

BRIDGE PARAPET / RAIL

The Type S-1 steel railing is in good condition (see Photo No. 6).

- No impact damage was noted at the time of the inspection.
- The bridge rail is not crash tested, and therefore does not meet current IDOT requirements for this structure.

SUPERSTRUCTURE

The superstructure is in **poor condition**.

Top of Deck (see Photo No. 7)

- The HMA wearing surface has been replaced since the previous inspection and it is in good condition.
- A transverse crack up to 1/4 in. wide is present at the pier (see Photo No. 8).

Beams (see Photo No. 9)

- The PPC deck beams are in poor condition.
- A 1 ft. by 1 ft. spall with 2 in. penetration is located at the south exterior beam in the east span along the top edge at the 2nd bridge rail post from the east abutment.
- Spalls and delaminations are present on four beams in the west span and nine beams in the east span. Many spalls have exposed, corroded stirrups (see *Photo No. 10*). Refer to sketch in Appendix C for more details.
- Water infiltration is occurring through several of the joints in both spans, most notably at beam joints 1-2 and 2-3 of the west span.

Pedestrian Bridge (see Photo No. 11)

- Two separate PPC deck beams, which support an adjacent bike path structure, are in good condition. These beams are supported by widened substructure units of the main bridge.
- The asphalt surface of the pedestrian bridge exhibits transverse cracking up to 1/2 in. wide at approximately 10 ft. spacing (see Photo No. 12).
- Settlement up to 1 in. of the approach pathways has created an uneven riding surface (see Photo No. 13).

SUBSTRUCTURE

The substructure is in **fair condition**.

Abutments (see Photo No. 14 & 15)

- Minor vertical hairline cracking and water staining is present throughout both abutment caps.
- The earth embankment along the east abutment is heavily eroded with up to a 4 ft. vertical face, and the top 6 in. of the south pile is exposed (see Photo No. 16).
- The rating was previously reduced to a "5" due to the erosion around the southeast abutment pile.
- The abutments were widened at the north ends in 1999 to accommodate a pedestrian structure adjacent to the bridge.
- The widened section at the north end of the west abutment is slightly undermined, but no pile is visible.

Wingwalls (see Photo No. 17)

• The wingwalls are typically smooth and sound with no notable defects.

Pier (see Photo No. 18)

- Several of the concrete piles exhibit minor hairline cracking at the top below the cap.
- All of the original bridge pier piles have extensive cracking, delaminations, and impending spalls (see Photo No. 19).
- There is a 6 in. by 8 in. spall with 1 in. penetration and exposed reinforcement and a 3 in. by 6 in. spall with 1/2 in. penetration near the north end on the east face of the pier cap. A 6 in. by 1 ft. spall is also present on the east face of the pier cap at the south end with up to 1.5 in. of penetration.
- A spall the width of the pier is present on the bottom of the pier cap in between the third and fourth pile from the south with exposed corroded reinforcement.
- Water staining is present on the cap due to leakage from the superstructure joint.
- Several of the pile encasements have significant spalling at the waterline with up to 4 in. of penetration (see Photo No. 20).
- The north end of the pier was widened in 1999 to accommodate a bike path structure adjacent to the bridge. The cap and the piles are in good condition.

SLOPE / CHANNEL (see Photo No. 21 & 22)

Slope/Channel Protection

- The upstream and downstream channel banks are moderately sloped and well vegetated.
- Bank erosion up to 3 ft. tall was observed, most notably at the southwest bank.
- No riprap scour protection is in place at the structure.
- The east abutment embankment is heavily eroded. A 6 in. diameter clay drain tile that runs under the abutment is exposed. The south end of the east abutment is eroded underneath the cap and one pile is exposed (see Photo No. 23).
- Runoff erosion due to water flowing over the deck is present in between the structure and the pedestrian bridge (see Photo No. 24).

Channel Adequacy

- Minor debris up to 6 in. in diameter has accumulated around some of the piles most notably around the 3rd pile from the north, which is partially restricting the flow (see Photo No. 25).
- A scour pocket, 2 to 3 ft. deep, is present at the north 4 columns of the pier.

TRAFFIC SAFETY

Pavement lane marking are present and visible. There is an intersection with Crane Rd. approximately 0.3 miles east of the structure and an intersection with Burr Rd. & Reserve Ct. approximately 0.2 miles west of the structure.

Guardrail (see Photo No. 26)

- Steel plate beam guardrail and Type 1 Special (Tangent) end sections are present at all four corners of the structure and are in good condition with no impact damage noted.
- The approach guardrail and end sections meet current IDOT standards.

Signage

• Hazard clearance markers are present on all of the guardrail ends.

GEOMETRY / UTILITIES

Geometry

• The structure is in a tangent horizontal alignment with no vertical grade change. **Utilities**

- There are no utilities attached to the structure.
- An overhead, pole-mounted utility is located in the south right-of-way.

STRUCTURE RATING / POSTING

- The structure was load rated based on the original design plans and field inspection data. The results are as follows:
 - Inventory Rating = RF 0.741 (HS 14.8)
 - Operating Rating = RF 1.236 (HS 24.7)
- This structure has an Operating Rating of less than 1.0 for Kane County Special Permit Vehicles, and weight restrictions for these vehicles should be implemented. Refer to Structure Rating calculations (Appendix F) for recommended posting and permit vehicle weight restrictions.

Posting not required.

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- The new HMA wearing surface is in good condition.
- The superstructure is in poor condition with areas of spalling with exposed corroded reinforcement along the PPC deck beams.
- Water leakage between several of the beams indicates that the keyways are damaged. The spalls and delaminations on the bottom of the PPC deck beams indicate that they are beginning to decline in condition and capacity. Repairs to the beams would not restore capacity when considering the load rating and posting of the structure.
- The existing substructure is in fair condition due to the exposure of one of the piles at the south end of the east abutment. The east abutment is heavily eroded and there is a minor amount of debris buildup around the pier piles. Additionally, the concrete pile encasements are heavily spalled at the waterline.
- The bridge rail does not meet current IDOT crash tested requirements.
- Weight restrictions should be implemented for Kane County permit vehicles. Refer to Structure Rating calculations (Appendix F) for recommended posting and permit vehicle weight restrictions.

RECOMMENDATIONS

Short Term (1 – 3 Years)

- Fill eroded areas of the channel near the abutments and pier and install riprap to protect the channel from further erosion. This may require an Army Corps of Engineers permit.
- Consider replacing existing bridge rail with bridge rail that is crash tested in accordance with current IDOT requirements.

Long Term (4 – 12 Years)

• Initiate a Phase 1 study to investigate improvement by superstructure replacement or complete structure replacement.

APPENDICES

Appendix A Bridge Inspection Report

- Appendix B IDOT Master Structure Report
- Appendix C Structure Sketches
- Appendix D Structure Photos
- Appendix E Cost Estimates
- Appendix F Structure Rating

APPENDIX A

BRIDGE INSPECTION REPORT

Routine Inspection Report

SN: 045-3122	District:	1	Spans: 2	Appr. S	pans: 0	Skew:	0°0'0"	ADT: 6550	Truck Pct:	4
ADT Un: N M	aint. Co:	Kan	e	Twsp:	St. Charles			Status:	Open - No Restri	iction
Facility Carried: Silver	Glen Road	1		-	Feature Cr	ossed: O	tter Creek	-		
Location: 0.83 MI W.	Randall Rd	ł.	Municipality:	South	Elgin	Team/Sub	Section:	N/N	Insp/Rte:	Ν
Bridge Name: N					Material &	. Туре:	5/05 - Pres	tressed Concrete	Box Beam	
Insp. Intervals Routine:	24		Fracture Critical	: 0 Un	derwater:	0	Special:	N Ele	ment Level:	0
90- Inspection Date:	2/19/201	6			90C - Temp	o. (°F): 5	5°	90B1- In	Depth:	
Is Delinquent:	Reason:		Ν							
90A - Agency Program N	Aanager:	Ham	nelka, J. M.		90A3- Cons	sultant Pro	ogram Man	ager: N		
90A1- Team Leader:	Guerriero), J. F	р.		90A2- Insp	ector: So	chneider, J.	M.		
90B- Inspection Remark	s:					-				
Previous Inspections										
				Re	sources					
Time to Inspect (H:M):	2:30	2	:30 Traffic Cor	trol: N	N Boat:	N N	Waders:	Y Y Sno	oper: N N	
Ladder: N N Manli	ft: N	Ν	Bucket Truck:	N N	Other:					
	Inspector's Appraisals									
EQ Dock Condition:	Prev	New 4	Now acabalt over	rlav bac	hoon installs	Con Con	nments	action and it i	s in good conditi	on
58 - Deck Condition.	5	4	New aspirate ove	1149 1145		eu since p	ievious ilisp			011.
59 - Superstructure Con	d: 5	4	Several spalls an	d delami	nations with	exposed	corroded s	hear reinforce	ment.	
			Leakage and effl	orescenc	e present al	ong the m	najoirty of k	eyway joints.		
60 - Substructure Cond:	5	5	Scour pocket arc	ound the	4 upstream	columns o	of the pier u	ıp to 3' deep. I	oss of section of	f the
			pier columns at t	the wate	rline. Multip	le areas o	f erosion al	ong abutment	s with exposed p	oiles.
62 - Culvert Condition:	Ν	Ν								
61 - Channel Condition:	5	5	Southwest bank	exhibitin	g erosion wi	ith up to 3	' vertical fa	ce. Erosion 4'	deep present	
			along bank in fro	ont of the	east abutm	ient.				
71 - Waterway Adequac	y: 8	8								
72 - Approach Rdwy Alig	gn: 8	8								
111 - Pier Navig Protecti	on: N	Ν								
			90	B - Inspe	ection Rema	rks				

Routine Inspection Report

Structure Number: 045-3122

							. 043 3122
			Additional In	spection Data			
36A - Bridge Railing Ade	quacy:	2 2 Rai	Types: Type	e S-1 Steel Rail	Prov. Now		Prov. Now
Approach Guardrail Ade	equacy: 36B - ⁻	Transitions:	3 3	36C - Guardrail:	3 3	36D - Ends:	3 3
		Prev New			Prev New		Prev New
108A - Wearing Surface	Type:	G G	108B - Type o	of Membrane:	AA	108C - Deck Pro	tection: J J
108D - Total Deck Thick	ness (In.):	25.0 25.0					
		Prev New	1				
59A - Paint Date (Mo/Yr	·):						
	-			_ .		_	
59B - Paint Type	_		Cold	<u>r</u> : Fascia	; Int	er; I	Railing
			1				
59C - Utilities Attached:	N-N-	N N-N-N					
					Prev New		
	70A2 - Single	e Unit Vehicles	;			Tons	
Mainht Linsit Destine	70B2 - Comb	ination Type 3	3S-1 (3 or 4 ax	les):		Tons	
weight Limit Posting	70C2 - Comb	ination Type 3	3S-2 (5 or mor	e axles):		Tons	
	70D2 - One 1	Fruck at a Time	е				
	-						
Joint Openings (In.):	N/A						
		906	B - Inspection	Remarks Continu	ed:		
				Signature			Date
Inspection Team Leader	:	Junt Plymon		9			2/19/2016
Consultant Program Ma	nager:						
Agency Program Manag	er:	Smrstful	L				2/19/2016

(

APPENDIX B

IDOT MASTER STRUCTURE REPORT

Illinois Department of Transportation Structures Information Management System Master Structure Report (S-107)

Page 1

Structure Number:	045-3122	District:	1

Inventory Data								
Facility Carried:	SILVER GLEN RD	Bridge Name:		Sufficiency Rating:	84.8	Structure Length:	93.4	
Feature Crossed:	OTTER CREEK	Location: 0.83	MI W RANDALL RD	HBP Eligible:	No	AASHTO Bridge Leng	Jth: 88.4	
Bridge Remarks:				Replaced By:		Length of Long Span	: 44.8	
Bridge Status:	1 OPEN - NO RESTRICT	StatusDate: 04/19	988	Replaces:		Bridge Roadway Wid	th: 40.0	
Status Remarks:				Last Update Date:	07/05/2012	Appr Roadway Width	: 30.0	
Maint County:	045 KANE Maint 1	ownship: 14 ST CHAR	LES	Parallel Structure:	None	Deck Width:	40.0	
Maint Responsibility:	03 COUNTY			Multi-Level Structure	Nbr:	Sidewalk Width Right	t: 0.0	
Service On/Under:	1 HIGHWAY	/ 5 WATER	NAY	Skew Direction:	None	Sidewalk Width Left:	0.0	
Reporting Agency:	3 COUNTY			Skew Angle: 0	D	Navigation Control:	0 No	
Main Span Matl/Type:	5 PRESTRESS CONCRETE	/ 05 BOX BEAM (OR GIRDER-MULTIP	LE Structure Flared:	No	Navigation Horiz Cl	ear: 0	
Nbr Of Main Spans:	2 Nbr Of Approach Spans:	0		Historical Significan	ce: No	Navigation Vert Cle	ar: 0	
Approaches				Border Bridge St	ate:	Culvert Fill Depth	: 0.0	
Near #1 Matl/Type:		/		Bdr State SN:		Number Culvert C	ells: 0	
Near #2 Matl/Type:		/		Bdr State % Res	oonsibility:	0 Culvert Opening	Area: 0.0	
Far #1 Matl/Type:		/		Structural Steel	Nt:	0 Culvert Cell Heigh	nt: 0.00	
Far #2 Matl/Type:		/		Substructure Ma	terial:	55 Culvert Cell Width	ı: 0.00	
Median Width/Type:	0 Ft. / 0 None			Rated By: N N/A	Rate Me	thod: D		
Guardrail Type L/R:	0 None / 0 N	lone Invent	tory Rating: 1.	.000 (36) Load Rating Date: 0	1/15/1986	***Railroad Crossing	Info***	
Toll Facility Indicator:	0 No Toll	Opera	ting Rating: 1.	.365 (49)	Cros	sing 1 Nbr:		
Latitude: 41.970220	Latitude: 41.97022000 Longitude: 88.35634000 Design Load: 02 HS20 Crossing 1 Nbr:							
Deck Structure Type:	Deck Structure Type: E PCAST PRES CN DK BM Deck Structure Thickness: 21.0 SD: N FO: N RR Lateral Underclear: 0.0							
Sidewalks Under Structure: 0 None RR Vertical Underclear: 0 Ft 0 In								
Key Route On Data Key Route Under Data								
Key Route Nbr: FEDER	RAL-AID PRIMARY 05	26 Station: 6.5400			Station	n:		
Appurtenances Main R	oute 00000	Segment:			Segme	ent:		
Inventory County: 0	45 KANE	Linked: Y			Linked	:		
Township/Road Dist 1	4 ST CHARLES	Natl. Hwy System:	Not on NHS		Natl. H	wy System:		
Municipality 5410	SOUTH ELGIN	Inventory Direction:			Invente	ory Direction:		
Urban Area: 1051		Curr AADT Yr/Count:	2014 / 6550		Curr A	ADT Yr/Count:	1	
Functional Class: 5		Est Truck Percentage:	4		Est Tru	uck Percentage:		
** CLEARANCES ** So	uth/East North/West	Number Of Lanes:	2	South/East North/West	Numbe	er Of Lanes:		
Max Rdwy Width: 2	24.0	One Or Two Way:	2 Two-Way		One O	r Two Way:		
Horizontal: 2	26.0 0.0	Bypass Length:	3		Bypas	s Length:		
Min Vertical: 99	Ft 11 In 99 Ft 11 In	Future AADT Yr/Cnt:	2032 / 2300	Ft In Ft In	Future	AADT Yr/Cnt:	/	
10 Ft Vertical: 99	Ft 11 In 99 Ft 11 In	Designated Truck Rte:	NONE	Ft In Ft In	Desigr	nated Truck Rte:		
Lateral:		Special Systems:	No	FtFt	Specia	I Systems:		
	*** Marked Route	On Data ***		*** Mark	ed Route Une	der Data ***		
	Designation	Kind	Number	Designation		Kind	Number	
Route #1: 1 Mainli	ne 8	Other						
Route #2: 1 Mainli	ne							
Route #3: 1 Mainli	ne							

Illinois Department of Transportation Structures Information Management System Master Structure Report (S-107)

Page 2

Structure Numb	ber: 045	-3122	District:	1							
				Data	Related to I	nspection Informati	ion				
***Inspection Intervals *** Maximum Allowable Posting Limits *** Bridge Posting Level:											
Routine NBIS:	24 MOS	Underwater:	0 MOS	One Truck At A Ti	i me: 0	Combination Type	3S-1:	Tons	5 No Posting R	equired	
Fracture Critical:	0 MOS	Special:	N	Single Unit Vehic	les: To	ns Combination Type	3S-2:	Tons			
				In	spection/Ap	praisal Information					
Inspection Date	:	02/25/2014	Inspe	ction Temperature:	16 Deg.	F Insp by (Name):	HaasM		** Actual	Posted Limits	**
Deck:		5 FAIR CO	NDITION - N	INOR SECTION LO	SS, CRACKS	Insp by (Name):	KoisC		Single Unit Ve	hicles:	Tons
Superstructure:		5 FAIR CO	NDITION - N	INOR SECTION LO	SS, CRACKS	Utilities Attached:	N N/A	A	Combination	Type 3S-1:	Tons
Substructure:		5 FAIR CO	NDITION - N	INOR SECTION LO	SS, CRACKS		N N/A	Α	Combination	Type 3S-2:	Tons
Culvert:		N NOT APP	PLICABLE				N N/A	A	One Truck At	A Time: 0	
Channel and Protect	ction:	5 FAIR CO	NDITION - N	INOR SECTION LO	SS, CRACKS	Deck Wearing Surf:	G BIT	TUMINOUS OVERLA	Y	Last Paint T	ype:
Structural Evaluation	on:	5 BETTER	THAN ADEC	QUATE TO BE LEFT	IN PLACE	Deck Membrane:	AWA	ATERPROOF MEM S	YST		
Deck Geometry:		5 BETTER	THAN ADEC	QUATE TO BE LEFT	IN PLACE	Deck Protection:	J NC	DNE			
Underclearance-Vert/Lat.: N NOT APPLICABLE					Total Deck Thick:	25.0				ĺ	
Waterway Adequacy: 8 EQUAL TO PRESENT DESIRABLE CRITERIA					Last Paint Date:						
Approach Roadway	/ Align:	8 EQUAL 1	TO PRESEN	DESIRABLE CRIT	ERIA	Inspection Remarks	5:				
3ridge Railing Appraisal: 2 Doesn't Meet Standards											
Approach Guardrai	l:	333 Acceptab	ole A	cceptable	cceptable						
Pier Navig Protection	on:	N N/A									
				Underw	ater Inspect	on/Appraisal Inforr	nation				
Inspection Date:											
Temperature:		Inspect	ion Method:								
Inspected By:		Inspect	ed By:		Appraisal Ratin	g:					
Inspection Remark	s:										
			Sco	ur Critical Infor	mation				Miscella	neous	
Rating: 5 CALC	ULATED SC	COUR ACCEPT	ABLE	Evalua	tion Method:	B Rational Analysis		Fra	acture Critical Mem	nbers: N	0
Analysis Date:	09/29/199	6		Analys	is By:	FOUAD ALSABBAGH		Mi	crofilm Data Recor	ded: N	0
		Constru	ction Info	rmation				•			
Year: 198	84 Origir	nal		Reconstr	ructed						
Route: FA	P0526	Sta: 10)+08		Sta:						
Section Nbr: 82-	-00115-01-E	BR									
Contract Nbr:											
Fed Aid Pr #: 000	0000000000	000									
Built By: 3	COUNTY A	AGENCY									
					Proposed	Improvement					
	Cost Esti	mate Year:		Length:					*** Costs in Dollars	S ***	
	Type of W	/ork:						Bridge	Cost:		
	Done By:							Roadwa	y Cost:		
	Remarks:	: [Total Pr	oject Cost:		

APPENDIX C

STRUCTURE SKETCHES

LEGENDC0 = Crack - Open
CC = Crack - ClosedSS = Shear Stirrup
EF = Efflorescence
WL = Water Leakage
WL = Water Leakage
WL = Water LeakageDE = Delamination
PD = Plugged Drain Hole
PD = Plugged Drain Hole
PS = Prestressed Strand
RF = Reinforcement
RP = Repair
RS = Rust Staining
SP = SpallSS = Shear Stirrup
EF = Efflorescence
WL = Water Leakage
DelaminationSS = Shear Stirrup
EF = Efflorescence
WL = Water Leakage
DelaminationDelaminationSS = Prestressed Strand
RF = Reinforcement
RS = Rust Staining
SP = SpallCrack

UNDERSIDE OF DECK PLAN

EAST ABUTMENT

WEST ABUTMENT

Note: Cracking, delaminations, and impending spalls present on all columns.

ROJECT NO. 8847

SHEET 4 OF 4

APPENDIX D

STRUCTURE PHOTOS

Photo No. 1 North Elevation, looking Southeast

Photo No. 2 South Elevation, looking Northeast

Photo No. 3 Topside of Structure, looking West

Photo No. 4 Topside of Structure, looking East

Photo No. 5 Approach Roadway Transverse Cracking (West Shown), looking North

Photo No. 6 Typical Bridge Rail Condition (South Shown), looking Southwest

Photo No. 7 Typical Top of Deck Condition, looking Northwest

Photo No. 8 Transverse Crack at Pier, looking North

Photo No. 9 Typical Bottom of Beam Condition (East Span Shown), looking West

Photo No. 10 Typical Spalls and Delaminations (Beam 5 & 6 Shown), looking West

Photo No. 11 Topside of Pedestrian Bridge, looking East

Photo No. 12 Typical Transverse Cracking in Pedestrian Bridge Surface, looking South

Photo No. 13 Typical Settlement at Pedestrian Bridge Joint, looking South

Photo No. 14 East Abutment, looking Southeast

Photo No. 15 West Abutment, looking Northwest

Photo No. 16 Exposed Metal Shell Pile at South End of East Abutment, looking Southeast

Photo No. 17 Typical Wingwall Condition (Southwest Shown), looking North

Photo No. 18 Pier (East Face Shown), looking Southwest

Photo No. 19 Third Pile from South Condition, looking West

Photo No. 20 Typical Pile Condition at the Waterline (3rd from the South Shown), looking West

Photo No. 21 Upstream Channel View, looking North

Photo No. 22 Downstream Channel View, looking South

Photo No. 23 Erosion in Front of the East Abutment, looking Southeast

Photo No. 24 Runoff Erosion in Between the Structure and Pedestrian Bridge, looking East

Photo No. 25 Timber Debris at the 3rd & 4th Columns from the North, looking Northwest

Photo No. 26 Typical Guardrail/Guardrail End (Southeast Shown), looking Southwest

APPENDIX E

COST ESTIMATE

Cost Estimate

Short Term Recommended Repairs

ltem	<u>Unit</u>	Quantity	<u>Unit Price</u>	<u>Total</u>
Bridge Rail Replacement	Foot	180	\$175	\$31,500
Channel Fill and Grading	Cu. Yd.	75	\$105	\$7,875
Stone Riprap	Ton	80	\$200	\$16,000
Traffic Control and Protection	L Sum	1	\$1,800	\$1,800
			_	
Subtotal			-	\$57,175
10% Contingency				\$5,718
10% Mobilization				\$5,718
			_	
The total cost of the short term recommended repairs			-	\$68,610

Overall Replacement of Structure

Replacement of the PPC deck beam bridge with a 2 span bridge with a length of 93'-5" back to back of abutments and a width of 54'-6" out to out of deck would cost approximately \$1,529,000.

APPENDIX F

STRUCTURE RATING

February 19, 2016

Structure Rating Summary

Load Rating Performed	ELN	3/29/2016
Load Rating Checked	AMS	4/20/2016

Simple Span PPC Deck Beam Rating

LFR METHOD

	RF	HS	Gross Weight (Tons)
HS-20 Inventory	0.741	14.8	26.6
HS-20 Operating	1.236	24.7	44.4

Illinois Posting Vehicle (Operating Level)

	RF	Gross Weight (Tons)
Single Unit	1.707	37.5
3 or 4 axles	1.512	44.2
5 or more axles	1.139	46.4

Kane County Special Permit Vehicle (Operating Level)

	RF	Gross Weight (Kips)
KC-1	0.830	141.1
KC-2	0.832	137.2
KC-3	0.897	125.5
KC-4	1.112	127.8

AASHTO Notional Truck (Operating Level)

	RF	Gross Weight (Tons)
AASHTO Notional	1.047	41.8

Recommended Bridge Postings

	Gross Vehicle Weight
Single Unit	
3 or 4 axles	
5 or more axles	

Bridge posting not required.

Recommended Kane County Special Permit Vehicle Limitations

	Gross Vehicle Weight	
KC-1	141.1 Kips	
KC-2	137.2 Kips	
KC-3	125.5 Kips	
KC-4	115.0 Kips	

Weight restrictions should be implemented for special permit vehicles. Gross Vehicle Weight indicated is the maximum recommended weight for that vehicle type.

Current IDOT S-107 Bridge Posting Level: Recommended Bridge Posting Level: 5 3 No Posting Required

10.0-19.9% Below Legal Loads

Collins Engineers, Inc. Appendix F | Page 1

Structure Rating Calculations

Simple Span PPC Deck Beam Rating - Span 1 LFR METHOD

BRIDGE INFORMATION

Span	44.83	ft	
Year constructed	1983		
Skew	0.00	deg	
Out to Out	40.00	ft	
Clear width	40	ft	
Design Lanes	3	AASHTO 3.6/M	IBE 6B.6.2.2
Actual Lanes Loaded	2		

BEAM TYPE 6 21x48

<u>.</u>		
diaphragms	1	
diaphragm weight	0.295	k
WS Thickness	4.00	in
f 's (prestressing strands)	270000	psi
f'c	5000	psi
f 'ci	4000	psi
fy (shear reinforcement)	60	ksi
Rail / Parapet	0.068	k/ft
Strand Type	stress i	relieved

Deck Beams:

Beam	21x48	
Number of Beams	10	
% Strand Area Reduction	0.00	%
% Shear Key Reduction	0.00	%
Beam Depth	21	in
Beam Width, b	4.00	ft
Beam Weight	0.7200	k/ft
Beam Area	667.72	in ²
Centroid from Bottom, Cb	10.42	in

Strands:

	Strand Diameter	1/2	in
	Strand Area	0.153	in
	Number of Strands @		
	Original	Current	
	12	8	1.75 i
	2	2	3.25 i
			4.50 i
			6.00 i
			7.50 i
			9.00 i
			10.50 i
			12.00 i
			15.00 i
Total	14.00	10.00	strands
C.G.	1.96	2.05	in
d	19.04	18.95	in

Dead Load:

Beam	0.720	k/ft
Wearing Surface	0.200	k/ft
Rail / Parapet (3 Bms Max)	0.023	k/ft
Fill	0.000	k/ft
	0.943	k/ft
Other / Diaphram	0.295	k
Distance to Diaphgram		ft

Structure 1	Vo. 0	45-3	122

February 19, 2016

Load Rating Performed	ELN	3/29/2016
Load Rating Checked	AMS	4/20/2016

Moment Capacity (current section properties)

As*	1.53	in ²	
Aeff = bd	909.60	in ²	
ρ*	0.0017		(3) (Eq. 10)
b' (web, total)	32.189	in	
γ*	0.40		(3) 1.1.7
β ₁	0.80		(1) 8.16.2.7
f*su	257,738	psi	(3) (Eq. 11)

а	1.93	in	(3) (Eq. 12)
t _{flange}	4.25	in	(3) (Eq. 13)
Check:	rectangular	section	-
Reinf. Index	0.087		(3) 1.1.7
Reinf. Index M	0.288		(3) 1.1.7
ф	1		(1) 9.14
φMn	590.3	k-ft	(3)(Eq. 13&14)
φMn max	590.3	k-ft	(3)(Eq. 15&16)

Prestress Losses

Humidity RH	70.00	%	(3) 1.1.5
Es	28,000	ksi	(3) 1.1.5
Eci	3,605	ksi	(3) 1.1.5
Ec	4031	ksi	
n	7		_
e (initial)	8.456	in	
e (current)	8.370	in	(3) 1.1.6
1	33,673.00	in ⁴	
Mdl beam	184.21	k-ft	
f*cir (initial)	0.764	ksi	(3) 1.1.5
Msdl	55.96	k-ft	
fcds (initial)	0.169	ksi	(3) 1.1.5
SH	6.500	ksi	(3) (Eq. 1a)
ES	5.936	ksi	(3) (Eq. 1b)
CRc	7.990	ksi	(3) (Eq. 1c)
CRs	14.728	ksi	(3) (Eq. 1d&e)
Fsi	189000	psi	(3) 1.1.4
% loss	18.60	%	(3) (Eq. 2)

Fi (for current a	289.17	k	(3) 1.1.6
F (now)	235.39	k	(3) 1.1.6
Sb	3232.5	in ³	
fpe (now)	0.962	ksi	(3) 1.1.7
Fr	530.33	psi	(3) 1.1.7
M*cr (now)	402.00	k-ft	(3) (Eq. 17)

Mcap=¢Mn	590.3	k-ft
1.2 * Mcr	482.4	k-ft
k	1.22	
Use køMn?	no	
φMn = C	590.3	k-ft
%Cap.Reduction	0.0	%
С	590.3	k-ft

M (HS 20) 535.7 k-ft V (HS 20) 57 k Live load shears and moments taken from AASHTO

> Collins Engineers, Inc. Appendix F | Page 2

February 19, 2016

Structure Rating Calculations

Load Rating Performed	ELN	3/29/2016
Load Rating Checked	AMS	4/20/2016

HS-20 Moments and Stresses	(AASHTO)
----------------------------	----------

D	MDL	240.17	k-ft	Factors:
L	MLL (per beam with impact)	173.07	k-ft	1
S	Prestress secondary M or V	0.000	k-ft	1
	St	3183	in ³	1
	Sb	3233	in ³	1
	Concrete stresses			-
	Fd (top)	0.906	ksi]
	Fd (bottom)	-0.892	ksi	1
	Fs (top)	0.000	ksi	1
	Fs (bottom)	0.000	ksi	1
	Fp (top)	-0.267	ksi	1
	Fp (bottom)	0.962	ksi	1
	Fd+Fs+Fp (top)	0.639	ksi	1
	Fd+Fs+Fp (bottom)	0.070	ksi	1
	FL (top)	0.653	ksi	1
	FL (bottom)	-0.642	ksi]
	Negative = Conc.Tension	•		-

 Design Lanes
 2

 IDOT PCM

 K
 0.800

 C
 0.714

 S
 3.300

 D
 6.611

 DF
 0.499

Number of striped lanes instead of number of design lanes used for load rating analysis per IDOT comments.

•		
Positive =	Conc.Compression	

Steel stresses for live loads beyond cracking moment

ybottom	1.75	in
с	2.684	in
Check:	OK: c is in to	p flange
l _{cr}	3121.6	in4
Fp	153.85	ksi
Fd	106.25	ksi
FL	76.57	ksi

Impact		0.294		
Design DI	=	0.499	wheel/beam	IDOT PCM
		0.499	wheel/beam	

HS 20 Ratings

0						
Inventory	Capacity	Dead Load	Live Load	RF	HS	Gross Tons
Concrete Tension	-0.4242641	0.07041047	-0.64246966	0.77	15.4	27.7
Concrete Compression	3.000	0.639	0.65	3.618	72.3	130.2
Concrete Compression	2.00	0.320	0.65	2.575	51.5	92.7
Prestressing Steel Tension	216.00	106.255	76.57	1.433	28.6	51.6
Flexural Strength	590.33	240.17	173.07	0.74	14.8	26.6
Shear Strength		See next pag	e	2.335	46.7	84

Operating	Capacity	Dead Load	Live Load	RF	HS	Gross Tons
Prestressing Steel Tension	243	106.3	76.57	1.786	35.7	64.2
Flexural Strength	590.3	240.17	173.07	1.236	24.7	44.4
Shear Strength	See next page			3.897	77.9	140.2

Inventory Rating

$$RF = \frac{6\sqrt{f_c' - (F_d + F_p + F_s)}}{F_1}$$
 Concrete Tension
$$RF = \frac{0.6f_c' - (F_d + F_p + F_s)}{F_2}$$
 Concrete Compression

$$RF = \frac{0.4f_c' - \frac{1}{2}(F_d + F_p + F_s)}{F_1} \text{ Concrete Compression}$$

$$RF = \frac{0.8f_y^* - (F_d + F_p + F_s)}{F_1}$$
 Prestressing Steel Tension

$$RF = \frac{\varphi R_{\mu} - (1.3D + S)}{2.17L(1+I)}$$
 Flexural and Shear Strength

Inventory Rating: Structure may be utilized for an indefinite period of time at inventory rating levels Operating Rating: Absolute maximum permissible load level

	RF	HS	Ī	Controlling Rating
Inventory	0.741	14.8	Inventory:	Concrete Compression
Operating	1.236	24.7	Operating:	Flexural Strength

Operating Rating

 $RF = \varphi R_n - \frac{(1.3D + S)}{1.3L(1+I)}$ Flexural and Shear Strength

$$RF = \frac{0.9f_y^* - (F_d + F_p + F_s)}{F_1}$$
 Prestressing Steel Tension

Collins Engineers, Inc. Appendix F | Page 3

Silver Glen Road over Otter Creek

Structure No. 045-3122

February 19, 2016

Structure Rating Calculations

ture Rating Calculations				Load Rating P	erformed	ELN	3/29/2016
	Load Rating Checked					AMS	4/20/2016
			fraction DL e	externally applie	ed	0.235	
			fraction DL f	rom beam		0.765	
						•	
HS-20 Shear Rating	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
Vd (total dead load shear)	19.79	17.05	12.83	8.60	4.23	0.00	k
VLL max. (STAAD - axle load)	54.04	49.70	42.38	35.06	27.98	21.47	k
VLL (max per beam with impace	17.46	16.06	13.69	11.33	9.04	6.94	k
Vs (total unfactored)	37.24	33.11	26.52	19.93	13.27	6.94	k
Vult (total factored)	63.62	57.03	46.40	35.77	25.12	15.06	k
V @ Mmax (axle)	51.75	0.00	0.00	0.00	0.00	0.00	
Vi (factored from externally ap	34.08	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
Conservative approximation of	f zero shear	at point of ma	aximum morr	nent (AASHTO	9.20.2.2/IDO	T PCM Eq.	
23) is used unless shear contr	ols rating un	der this assu	mption and r	equires addition	nal analysis.		
MDL	32.81	86.60	154.24	202.94	232.69	243.49	k-ft
MLL max (STAAD - axle load)	81.2	222.82	379.97	474.58	528.13	525.68	k-ft
MLL (per beam with impact)	26.23	71.99	122.75	153.32	170.62	169.83	k-ft
Ms	59.04	158.58	277.00	356.26	403.31	413.31	k-ft
Mult	99.60	268.85	467.01	596.68	672.91	685.23	k-ft
Mmax (factored from externally	66.96	182.69	313.54	394.75	441.39	442.96	k-ft
е	8.37	8.37	8.37	8.37	8.37	8.37	in
d or 0.8xh	18.95	18.95	18.95	18.95	18.95	18.95	in
b'	32.19	32.19	32.19	32.19	32.19	32.19	in
vu	0.104	0.093	0.076	0.059	0.041	0.025	Vult/b'd ksi
F/A	0.353	0.353	0.353	0.353	0.353	0.353	ksi
Fe/Sb	0.609	0.609	0.609	0.609	0.609	0.609	ksi
fpe	0.962	0.962	0.962	0.962	0.962	0.962	ksi
fd	0.122	0.322	0.573	0.754	0.864	0.904	ksi
У	10.42	10.42	10.42	10.42	10.42	10.42	
Mcr	340.5	286.7	219.1	170.4	140.6	129.8	AASHTO (9-28)
vci	0.359	0.084	0.068	0.058	0.050	0.042	. ,
vci minimum	0.120	0.120	0.120	0.120	0.120	0.120	
vci used	0.359	0.120	0.120	0.120	0.120	0.120	
Fe(y'-Cb)/I	0.00	0.00	0.00	0.00	0.00	0.00	ksi
M DL(Y'-Cb)/I	0.00	0.00	0.00	0.00	0.00	0.00	ksi
fpc	0.353	0.353	0.353	0.353	0.353	0.353	ksi
Vp	0.00	0.00	0.00	0.00	0.00	0.00	k
vcw	0.353	0.353	0.353	0.353	0.353	0.353	ksi
<u> </u>							I

Welded wire fabric	Spacing	W size	Area (sq.in./wir.	Area (sq.in./ft)
		3 W5.5	0.055	0.22
		8 W2.5	0.025	0.0375

Shear reinforcement bar size	W5.5	W5.5	W5.5	W5.5	W5.5	W5.5	
Av	0.11	0.11	0.11	0.11	0.11	0.11 ii	n
S	3.0	3.0	3.0	3.0	3.0	3.0 ii	n
VS	0.068	0.068	0.068	0.068	0.068	0.068	
φ = 0.90			•				
φvn = φ(vs+vc)	0.379	0.170	0.170	0.170	0.170	0.170 k	si
С	231.4	103.5	103.5	103.5	103.5	103.5 k	<
D	19.79	17.05	12.83	8.60	4.23	0.00	
L	17.46	16.06	13.69	11.33	9.04	6.94	
Inventory RF	5.430	2.335	2.923	3.757	4.997	6.877	
Operating RF	9.064	3.897	4.879	6.271	8.341	11.480	

Shear Rating Factor:	RF	HS
Inventory	2.335	46.7
Operating	3.897	77.9

February 19, 2016

Structure Rating Calculations

Load Rating Performed	ELN	3/29/2016
Load Rating Checked	AMS	4/20/2016

pie Span PPC Deck Beam Ratil	ng			0.499	wheel per be
or rosung venicles.	Type 2	Туре 3	Type 3-S1	Type 3-S2	Type 3-S2
AAD LL moment	276.34	387.96	437.83	581.53	414.14
ments and Stresses (AASHTO)	Type 2	Туре 3	Type 3-S1	Type 3-S2	Type 3-S2
Total deal load moment	240.17	240.17	240.17	240.17	240.17
Live load moment w/ imp. per	89.28	125.34	141.45	187.87	133.79
Prestress secondary M or V	0.000	0.000	0.000	0.000	0.000
St	3183	3183	3183	3183	3183
Sb	3233	3233	3233	3233	3233
Concrete stresses					
Fd (top)	0.906	0.906	0.906	0.906	0.906
Fd (bottom)	-0.892	-0.892	-0.892	-0.892	-0.892
Fs (top)	0.000	0.000	0.000	0.000	0.000
Fs (bottom)	0.000	0.000	0.000	0.000	0.000
Fp (top)	-0.267	-0.267	-0.267	-0.267	-0.267
Fp (bottom)	0.962	0.962	0.962	0.962	0.962
Fd+Fs+Fp (top)	0.639	0.639	0.639	0.639	0.639
Fd+Fs+Fp (bottom)	0.070	0.070	0.070	0.070	0.070
FL (top)	0.337	0.473	0.533	0.708	0.504
FL (bottom)	-0.331	-0.465	-0.525	-0.697	-0.497
Steel stresses	•				
Fp	153.85	153.85	153.85	153.85	153.85
Fd	NA	NA	NA	106.25	NA
FL	NA	NA	NA	83.12	NA

Inventory IN	Type Z	Type 5	Type 5-51	1 ype 5-52	Type 5-52
Concrete Tension	1.493	1.063	0.942	0.709	0.996
Concrete Compression	7.014	4.996	4.427	3.333	4.680
Concrete Compression	4.992	3.556	3.151	2.372	3.331
Prestressing Steel Tension	NA	NA	NA	1.320	NA
Flexural Strength	1.436	1.023	0.906	0.682	0.958
Shear Strength	4.744	3.431	3.224	2.275	3.245
Operating RF					

Prestressing Steel Tension	NA	NA	NA	1.645	NA
Flexural Strength	2.396	1.707	1.512	1.139	1.599
Shear Strength	7.918	5.727	5.382	3.797	5.416

Refer to following pages for shear rating calculations

Postings: (Operating Level)	RF C	PERATING	Tons
Single Unit	Type 2	2.396	37.7
	Туре 3	1.707	37.5
Semi-Trailers	Type 3-S1	1.512	44.2
	Type 3-S2	1.139	46.4
	Type 3-S2	1.599	63.9

Recommended Posting				
Single Unit				
3 or 4 axles				
5 or more axles				

** Structures less then a rating of 3 Tons should be closed to traffic. Operating = Absolute maximum permissible load level

Conservative approximation of zero shear at point of maximum moment at the various sections checked for shear capacity (AASHTO 9.20.2.2/IDOT PCM Eq. 23) indicates that shear does not control for legal vehicles or or permit vehicles included in this rating.

February 19, 2016

Structure Rating Calculations

Load Rating Performed	ELN	3/29/2016
Load Rating Checked	AMS	4/20/2016

	<i>Sounty Special Permit Vehicles</i>	<u>):</u>					_
		KC-1	KC-2	KC-3	KC-4	AASHTO]
١Ľ	<u>D LL moment</u>	797.33	795.97	738.25	595.55	632.56	k-ft
eı	nts and Stresses (AASHTO)	KC-1	KC-2	KC-3	KC-4	AASHTO	1
T	Total deal load moment	240.17	240.17	240.17	240.17	240.17	k-ft
	Live load moment w/ imp. per	257.59	257.15	238.50	192.40	204.36	k-ft
1	Prestress secondary M or V	0.0	0.0	0.0	0.0	0.0	k-ft
+	St	3183	3183	3183	3183	3183	in ³
ŀ	Sb	3233	3233	3233	3233	3233	in ³
L	Concrete stresses						
ſ	Fd (top)	0.906	0.906	0.906	0.906	0.906	ksi
ŀ	Fd (bottom)	-0.892	-0.892	-0.892	-0.892	-0.892	ksi
ŀ	Fs (top)	0.000	0.000	0.000	0.000	0.000	ksi
ŀ	Fs (bottom)	0.000	0.000	0.000	0.000	0.000	ksi
ł	Fp (top)	-0.267	-0.267	-0.267	-0.267	-0.267	ksi
ŀ	Fp (bottom)	0.962	0.962	0.962	0.962	0.962	ksi
ŀ	Fd+Fs+Fp (top)	0.639	0.639	0.639	0.639	0.639	ksi
ŀ	Fd+Fs+Fp (bottom)	0.070	0.070	0.070	0.070	0.070	ksi
ł	FL (top)	0.971	0.970	0.899	0.725	0.771	ksi
ł	FL (bottom)	-0.956	-0.955	-0.885	-0.714	-0.759	ksi
L	Steel stresses				•••••		
ľ	Fp	153.85	153.85	153.85	153.85	153.85	ksi
ŀ	Fd	106.25	106.25	106.25	106.25	106.25	ksi
ŀ	FI	113.96	113.76	105 51	85.12	90.41	ksi
							nor
F	Inventory RF	KC-1	KC-2	КС-3	KC-4	AASHTO	
ļ	Inventory RF Concrete Tension	KC-1 0.517	KC-2 0.518	KC-3 0.559	KC-4 0.693	AASHTO 0.652	
	Inventory RF Concrete Tension Concrete Compression	KC-1 0.517 2.431	KC-2 0.518 2.435	KC-3 0.559 2.625	KC-4 0.693 3.255	AASHTO 0.652 3.064	
	Inventory RF Concrete Tension Concrete Compression Concrete Compression	KC-1 0.517 2.431 1.401	KC-2 0.518 2.435 1.404	KC-3 0.559 2.625 1.513	KC-4 0.693 3.255 1.876	AASHTO 0.652 3.064 1.766	
	Inventory RF Concrete Tension Concrete Compression Concrete Compression Prestressing Steel Tension	KC-1 0.517 2.431 1.401 0.963	KC-2 0.518 2.435 1.404 0.965	KC-3 0.559 2.625 1.513 1.040	KC-4 0.693 3.255 1.876 1.289	AASHTO 0.652 3.064 1.766 1.214	
•	Inventory RF Concrete Tension Concrete Compression Concrete Compression Prestressing Steel Tension Flexural Strength	KC-1 0.517 2.431 1.401 0.963 0.498	KC-2 0.518 2.435 1.404 0.965 0.498	KC-3 0.559 2.625 1.513 1.040 0.537	KC-4 0.693 3.255 1.876 1.289 0.666	AASHTO 0.652 3.064 1.766 1.214 0.627	
•	Inventory RF Concrete Tension Concrete Compression Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength	KC-1 0.517 2.431 1.401 0.963 0.498 1.738	KC-2 0.518 2.435 1.404 0.965 0.498 1.728	KC-3 0.559 2.625 1.513 1.040 0.537 1.659	KC-4 0.693 3.255 1.876 1.289 0.666 2.058	AASHIO 0.652 3.064 1.766 1.214 0.627 2.439	
	Inventory RF Concrete Tension Concrete Compression Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength Operating RF	KC-1 0.517 2.431 1.401 0.963 0.498 1.738	KC-2 0.518 2.435 1.404 0.965 0.498 1.728	KC-3 0.559 2.625 1.513 1.040 0.537 1.659	KC-4 0.693 3.255 1.876 1.289 0.666 2.058	AASHTO 0.652 3.064 1.766 1.214 0.627 2.439	
	Inventory RF Concrete Tension Concrete Compression Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength Operating RF Prestressing Steel Tension	KC-1 0.517 2.431 1.401 0.963 0.498 1.738	KC-2 0.518 2.435 1.404 0.965 0.498 1.728 1.202	KC-3 0.559 2.625 1.513 1.040 0.537 1.659 1.296	KC-4 0.693 3.255 1.876 1.289 0.666 2.058 1.607	AASHTO 0.652 3.064 1.766 1.214 0.627 2.439 1.513	
	Inventory RF Concrete Tension Concrete Compression Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength Operating RF Prestressing Steel Tension Flexural Strength	KC-1 0.517 2.431 1.401 0.963 0.498 1.738 1.200 0.830	KC-2 0.518 2.435 1.404 0.965 0.498 1.728 1.202 0.832	KC-3 0.559 2.625 1.513 1.040 0.537 1.659 1.296 0.897	KC-4 0.693 3.255 1.876 1.289 0.666 2.058 1.607 1.112	AASHTO 0.652 3.064 1.766 1.214 0.627 2.439 1.513 1.047	
	Inventory RF Concrete Tension Concrete Compression Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength Operating RF Prestressing Steel Tension Flexural Strength Shear Strength	KC-1 0.517 2.431 1.401 0.963 0.498 1.738 1.200 0.830 2.902	KC-2 0.518 2.435 1.404 0.965 0.498 1.728 1.202 0.832 2.884	KC-3 0.559 2.625 1.513 1.040 0.537 1.659 1.296 0.897 2.770	KC-4 0.693 3.255 1.876 1.289 0.666 2.058 1.607 1.112 3.435	AASHTO 0.652 3.064 1.766 1.214 0.627 2.439 1.513 1.047 4.072	
	Inventory RE Concrete Tension Concrete Compression Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength Operating RF Prestressing Steel Tension Flexural Strength Shear Strength Shear Strength Premit Vehicles	KC-1 2.431 1.401 0.963 0.498 1.738 1.200 0.830 2.902	KC-2 0.518 2.435 1.404 0.965 0.498 1.728 1.202 0.832 2.884 RF DPERATING	KC-3 0.559 2.625 1.513 1.040 0.537 1.659 1.296 0.897 2.770 Gross Weight	KC-4 0.693 3.255 1.876 1.289 0.666 2.058 1.607 1.112 3.435	AASHTO 0.652 3.064 1.766 1.214 0.627 2.439 1.513 1.047 4.072	
	Inventory RF Concrete Tension Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength Operating RF Prestressing Steel Tension Flexural Strength Shear Strength Shear Strength Prestresstrength	KC-1 0.517 2.431 1.401 0.963 0.498 1.738 1.200 0.830 2.902 C - 170,000 lb	KC-2 0.518 2.435 1.404 0.965 0.498 1.728 1.202 0.832 2.884 RF DPERATING 0.830	KC-3 0.559 2.625 1.513 1.040 0.537 1.659 1.296 0.897 2.770 Gross Weight 141.1	KC-4 0.693 3.255 1.876 1.289 0.666 2.058 1.607 1.112 3.435 Kips	AASHTO 0.652 3.064 1.766 1.214 0.627 2.439 1.513 1.047 4.072	
	Inventory RF Concrete Tension Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength Operating RF Prestressing Steel Tension Flexural Strength Shear Strength Shear Strength Prestresstrength Shear Strength Shear Strength Type KC 1 Type KC 1	KC-1 0.517 2.431 1.401 0.963 0.498 1.738 1.200 0.830 2.902 C - 170,000 lb - 165,000 lb	KC-2 0.518 2.435 1.404 0.965 0.498 1.728 1.202 0.832 2.884 RF DPERATING 0.830 0.832	KC-3 0.559 2.625 1.513 1.040 0.537 1.659 1.296 0.897 2.770 Gross Weight 141.1 137.2	KC-4 0.693 3.255 1.876 1.289 0.666 2.058 1.607 1.112 3.435 Kips Kips	AASHTO 0.652 3.064 1.766 1.214 0.627 2.439 1.513 1.047 4.072	
	Inventory RF Concrete Tension Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength Operating RF Prestressing Steel Tension Flexural Strength Shear Strength Shear Strength Prestresstrength Shear Strength Type KC 1 Type KC 2 Type KC 3	KC-1 0.517 2.431 1.401 0.963 0.498 1.738 1.200 0.830 2.902 C - 170,000 lb - 165,000 lb - 140,000 lb	KC-2 0.518 2.435 1.404 0.965 0.498 1.728 1.202 0.832 2.884 RF DPERATING 0.830 0.832 0.897	KC-3 0.559 2.625 1.513 1.040 0.537 1.659 1.296 0.897 2.770 Gross Weight 141.1 137.2 125.5	KC-4 0.693 3.255 1.876 1.289 0.666 2.058 1.607 1.112 3.435 Kips Kips Kips	AASHTO 0.652 3.064 1.766 1.214 0.627 2.439 1.513 1.047 4.072	
	Inventory RE Concrete Tension Concrete Compression Prestressing Steel Tension Flexural Strength Shear Strength Operating RE Prestressing Steel Tension Flexural Strength Shear Strength Permit Vehicles Type KC 1 Type KC 2 Type KC 3 Type KC 4	KC-1 0.517 2.431 1.401 0.963 0.498 1.738 1.200 0.830 2.902 C - 170,000 lb - 165,000 lb - 140,000 lb - 115,000 lb	KC-2 0.518 2.435 1.404 0.965 0.498 1.728 1.202 0.832 2.884 RF DPERATING 0.830 0.832 0.897 1.112	KC-3 0.559 2.625 1.513 1.040 0.537 1.659 1.296 0.897 2.770 Gross Weight 141.1 137.2 125.5 127.8	KC-4 0.693 3.255 1.876 1.289 0.666 2.058 1.607 1.112 3.435 Kips Kips Kips Kips	AASHTO 0.652 3.064 1.766 1.214 0.627 2.439 1.513 1.047 4.072	

Refer to following pages for shear rating calculations

Conservative approximation of zero shear at point of maximum moment at the various sections checked for shear capacity (AASHTO 9.20.2.2/IDOT PCM Eq. 23) indicates that shear does not control for legal vehicles or or permit vehicles included in this rating.

February 19, 2016

Structure Rating Calculations

Load Rating Performed	ELN	3/29/2016
Load Rating Checked	AMS	4/20/2016

Shea	r Ratings	0.035	0.1	0.2	0.3	0.4	0.5	along span
	-	1.59	4.48	8.97	13.45	17.93	22.42	ft
	e	8.37	8.37	8.37	8.37	8.37	8.37	in
	d or 0.8xh	18.95	18.95	18.95	18.95	18.95	18.95	in
								-
	b'	32.19	32.19	32.19	32.19	32.19	32.19	in
	fpe	0.962	0.962	0.962	0.962	0.962	0.962	ksi
	fd	0.122	0.322	0.573	0.754	0.864	0.904	ksi
	У	10.42	10.42	10.42	10.42	10.42	10.42	
								1
	Mcr	340.5	286.7	219.1	170.4	140.6	129.8	k-ft
	VCW	0 353	0 353	0 353	0 353	0 353	0 353	kci
	vs	0.000	0.068	0.008	0.068	0.000	0.068	1.21
		0.000	0.000	01000	0.000	0.000	0.000	1
Vd	VDL (total dead load shear)	19.79	17.05	12.83	8.60	4.23	0.00	k
	MDL	32.81	86.60	154.24	202.94	232.69	243.49	k-ft

Conservative approximation of zero shear at point of maximum moment for vci (AASHTO 9.20.2.2/IDOT PCM Eq. 23) is used unless shear controls rating under this assumption and requires additional analysis.

IDOT Posting Vehicles

<u> Type 2 - 15.75 Tons</u>	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
VLL max. (STAAD - axle load)	26.35	24.46	21.25	18.05	14.84	11.64	k
VLL (per beam with impact)	8.51	7.90	6.87	5.83	4.79	3.76	k
Vs (total unfactored)	28.30	24.96	19.69	14.43	9.02	3.76	k
Vult (total factored)	44.20	39.33	31.58	23.84	15.90	8.16	k
V @ Mmax (axle)	23.60	0.00	0.00	0.00	0.00	0.00	
Vi (factored from externally ap	18.82	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
							-
MLL max (STAAD - axle load)	37.03	109.63	190.54	243.12	269.31	266.77	k-ft
MLL (per beam with impact)	11.96	35.42	61.56	78.54	87.00	86.18	k-ft
Ms	44.77	122.01	215.80	281.48	319.69	329.67	k-ft
Mult	68.62	189.47	334.15	434.34	491.38	503.64	k-ft
Mmax (factored from externally	35.98	103.30	180.68	232.41	259.86	261.37	k-ft
No.	0.072	0.064	0.052	0.020	0.026	0.012	Vult/bid kai
vu	0.072	0.004	0.052	0.039	0.020	0.013	
Vci	0.367	0.094	0.071	0.060	0.050	0.042	ksi
vci minimum	0.120	0.120	0.120	0.120	0.120	0.120	
vci used	0.367	0.120	0.120	0.120	0.120	0.120	ksi
$\phi = 0.90$		•	•	•		•	
$\phi vn = \phi(vs + vc)$	0.379	0.170	0.170	0.170	0.170	0.170	ksi
С	231.4	103.5	103.5	103.5	103.5	103.5	k
D	19.79	17.05	12.83	8.60	4.23	0.00	
L	8.51	7.90	6.87	5.83	4.79	3.76	
Inventory RF	11.135	4.744	5.829	7.297	9.422	12.685	1
Operating RF	18.588	7.918	9.730	12.180	15.727	21.174	

February 19, 2016

Structure Rating Calculations

Load Rating PerformedELN3/29/2016Load Rating CheckedAMS4/20/2016

<u> Type 3 - 22 Tons</u>	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
VLL max. (STAAD - axle load)	36.48	33.82	29.35	24.87	20.40	15.92	k
VLL (per beam with impact)	11.78	10.93	9.48	8.03	6.59	5.14	k
Vs (total unfactored)	31.57	27.98	22.31	16.64	10.82	5.14	k
Vult (total factored)	51.30	45.89	37.26	28.62	19.80	11.17	k
V @ Mmax (axle)	32.18	0.00	0.00	0.00	0.00	0.00	
Vi (factored from externally ap	23.47	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
							_
MLL max (STAAD - axle load)	50.49	151.63	263.14	336.98	377.22	387.96	k-ft
MLL (per beam with impact)	16.31	48.99	85.01	108.87	121.87	125.34	k-ft
Ms	49.12	135.58	239.25	311.80	354.55	368.82	k-ft
Mult	78.06	218.92	385.07	500.17	567.06	588.63	k-ft
Mmax (factored from external	45.42	132.76	231.60	298.25	335.54	346.37	k-ft
vu	0.084	0.075	0.061	0.047	0.032	0.018	Vult/b'd ksi
vci	0.363	0.089	0.070	0.059	0.050	0.042	ksi
vci minimum	0.120	0.120	0.120	0.120	0.120	0.120	
vci used	0.363	0.120	0.120	0.120	0.120	0.120	
$\phi = 0.90$							_
$\phi vn = \phi(vs+vc)$	0.379	0.170	0.170	0.170	0.170	0.170	ksi
С	231.4	103.5	103.5	103.5	103.5	103.5	k
D	19.79	17.05	12.83	8.60	4.23	0.00	
L	11.78	10.93	9.48	8.03	6.59	5.14	
Inventory RF	8.045	3.431	4.220	5.296	6.854	9.275	1
Operating RF	13.429	5.727	7.045	8.840	11.441	15.482	

<u>T Type 3-S1 - 29.25 Tons</u>	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
VLL max. (STAAD - axle load)	39.41	35.99	31.33	25.57	19.62	13.67	k
VLL (per beam with impact)	12.73	11.63	10.12	8.26	6.34	4.42	k
Vs (total unfactored)	32.52	28.68	22.95	16.86	10.57	4.42	k
Vult (total factored)	53.36	47.41	38.65	29.12	19.26	9.59	k
V @ Mmax (axle)	39.38	0.00	0.00	0.00	0.00	0.00	
Vi (factored from externally ap	27.37	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
	0.1 = 0	100.01		074.04	(00.00	107.00	1
MLL max (STAAD - axle load)	61.79	162.24	280.90	374.01	422.98	437.83	k-ft
MLL (per beam with impact)	19.96	52.41	90.75	120.83	136.65	141.45	k-ft
Ms	52.77	139.01	244.99	323.77	369.34	384.93	k-ft
Mult	85.99	226.36	397.53	526.14	599.16	623.61	k-ft
Mmax (factored from externally	53.34	140.20	244.06	324.22	367.64	381.35	k-ft
MI	0.087	0.078	0.063	0.048	0.032	0.016	Vult/b'd kei
vci	0.361	0.070	0.000	0.040	0.052	0.010	V UIU D U KSI
vci minimum	0.120	0.120	0.120	0.120	0.120	0.120	
vci used	0.361	0.120	0.120	0.120	0.120	0.120	
$\phi = 0.90$			•		•		1
ϕ vn = ϕ (vs+vc)	0.379	0.170	0.170	0.170	0.170	0.170	ksi
Ċ	231.4	103.5	103.5	103.5	103.5	103.5	k
D	19.79	17.05	12.83	8.60	4.23	0.00	
L	12.73	11.63	10.12	8.26	6.34	4.42	
Inventory RF	7.445	3.224	3.954	5.151	7.126	10.801	
Operating RF	12.428	5.382	6.600	8.598	11.895	18.030	

February 19, 2016

Structure Rating Calculations

Load Rating PerformedELN3/29/2016Load Rating CheckedAMS4/20/2016

Type 3-S2 - 40.75 Tons	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
VLL max. (STAAD - axle load)	56.42	51.01	42.63	34.25	27.26	19.90	k
VLL (per beam with impact)	18.23	16.48	13.77	11.06	8.81	6.43	k
Vs (total unfactored)	38.01	33.53	26.60	19.67	13.03	6.43	k
Vult (total factored)	65.30	57.95	46.58	35.20	24.61	13.96	k
V @ Mmax (axle)	35.63	0.00	0.00	0.00	0.00	0.00	
Vi (factored from externally ap	25.34	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
MLL max (STAAD - axle load)	84.14	228.68	386.02	494.08	555.58	563.22	k-ft
MLL (per beam with impact)	27.18	73.88	124.71	159.62	179.49	181.96	k-ft
Ms	59.99	160.47	278.95	362.56	412.17	425.44	k-ft
Mult	101.66	272.96	471.26	610.35	692.16	711.56	k-ft
Mmax (factored from externall	69.02	186.80	317.79	408.43	460.64	469.29	k-ft
					-	-	
vu	0.107	0.095	0.076	0.058	0.040	0.023	Vult/b'd ksi
vci	0.280	0.083	0.068	0.058	0.050	0.042	
vci minimum	0.120	0.120	0.120	0.120	0.120	0.120	
vci used	0.280	0.120	0.120	0.120	0.120	0.120	
φ = 0.90							
$\phi vn = \phi(vs+vc)$	0.313	0.170	0.170	0.170	0.170	0.170	ksi
С	191.1	103.5	103.5	103.5	103.5	103.5	k
D	19.79	17.05	12.83	8.60	4.23	0.00	1
L	18.23	16.48	13.77	11.06	8.81	6.43	
Inventory RF	4.182	2.275	2.906	3.845	5.129	7.420	
Operating RF	6.980	3.797	4.850	6.419	8.562	12.385]

<u>T Type 3-S2 - 40 Tons</u>	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
VLL max. (STAAD - axle load)	38.78	35.76	31.08	26.40	21.72	17.43	k
VLL (per beam with impact)	12.53	11.55	10.04	8.53	7.02	5.63	k
Vs (total unfactored)	32.31	28.61	22.87	17.13	11.24	5.63	k
Vult (total factored)	52.92	47.25	38.47	29.70	20.73	12.22	k
V @ Mmax (axle)	35.90	0.00	0.00	0.00	0.00	0.00	1
Vi (factored from externally ap	25.49	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
	FC 22	160.20	270.02	250.00	401.10	414.14	L A
MLL max (STAAD - axie load)	50.33	160.30	278.82	308.28	401.10	414.14	K-II
MLL (per beam with impact)	18.20	51.79	90.08	115.75	129.58	133.79	K-IT
MS	51.00	138.38	244.32	318.69	362.27	377.28	к-π
Mult	82.16	225.00	396.07	515.11	583.81	607.00	k-ft
Mmax (factored from externally	49.51	138.84	242.60	313.18	352.29	364.73	k-ft
Ma	0.087	0.077	0.063	0.040	0.034	0.020	Vult/b'd kei
Vu	0.007	0.077	0.003	0.049	0.034	0.020	
	0.302	0.000	0.009	0.039	0.030	0.042	
vciused	0.120	0.120	0.120	0.120	0.120	0.120	
$\phi = 0.90$	0.302	0.120	0.120	0.120	0.120	0.120	J
ϕ 0.00 ϕ	0.379	0.170	0.170	0.170	0.170	0.170	ksi
C	231.4	103.5	103.5	103.5	103.5	103.5	k
D	19.79	17.05	12.83	8.60	4.23	0.00	1
L	12.53	11.55	10.04	8.53	7.02	5.63	1
Inventory RF	7.566	3.245	3.985	4.989	6.437	8.471	1
Operating RF	12.630	5.416	6.653	8.328	10.745	14.141	1

February 19, 2016

Structure Rating Calculations		Load Rating Performed	ELN	3/29/2016
		Load Rating Checked	AMS	4/20/2016
Gross W/ = 31,500 # 15' 11.5 ^k 20 ^k	<u>Empty Weight</u> Ingle Unit Type 2 4 Tons	<u>GVW</u> 15.75 Tons	AIVIO	4/20/2010
Gross WI = 44,000 # 12 * 16 * 16 *	Type 3 8 Tons	22 Tons		
	Empty	Weight GVW		
	3 or 4 axles	<u> </u>		
Gross Wt = 58,500#	Type 3-S1 12	Tons 29.75 Tons		
10' 4' 14' 8.5 ^k 16 ^k 16 ^k 18 ^k				

φ		<u>~</u>
1	2'	4'
	1	12'

<u>5 or more axles</u> Type 3-S2 13 Tons 40.75 Tons

	Gross	Wt = 80.00	00#
		.31'	
12*	17* 17*		17* 17*

5 or more axles		
Type 3-52	13 Tons	40 Tons

February 19, 2016

Structure Rating Calculations

Load Rating PerformedELN3/29/2016Load Rating CheckedAMS4/20/2016

Kane County Special Permit Vehicles Shear RatingType KC-1 - 170,000 lb0.0350.0350.035

<u>KC-1 - 170,000 lb</u>	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
VLL max. (STAAD - axle load)	72.66	66.75	57.59	49.20	40.04	30.89	k
VLL (per beam with impact)	23.47	21.56	18.61	15.89	12.94	9.98	k
Vs (total unfactored)	43.26	38.62	31.43	24.50	17.16	9.98	k
Vult (total factored)	76.68	68.99	57.07	45.69	33.58	21.67	k
V @ Mmax (axle)	68.31	0.00	0.00	0.00	0.00	0.00	
Vi (factored from externally ap	43.05	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
							•
MLL max (STAAD - axle load)	107.18	299.82	522.30	670.31	765.46	780.88	k-ft
MLL (per beam with impact)	34.63	96.86	168.74	216.55	247.29	252.27	k-ft
Ms	67.43	183.46	322.98	419.49	479.98	495.76	k-ft
Mult	117.82	322.86	566.84	733.96	839.36	864.22	k-ft
Mmax (factored from externall	85.18	236.70	413.37	532.03	607.84	621.95	k-ft
							•
vu	0.126	0.113	0.094	0.075	0.055	0.036	Vult/b'd ksi
vci	0.357	0.081	0.067	0.058	0.050	0.042	ksi
vci minimum	0.120	0.120	0.120	0.120	0.120	0.120	1
vci used	0.357	0.120	0.120	0.120	0.120	0.120	1
$\phi = 0.90$							•
$\phi vn = \phi (vs + vc)$	0.379	0.170	0.170	0.170	0.170	0.170	ksi
С	231.4	103.5	103.5	103.5	103.5	103.5	k
D	19.79	17.05	12.83	8.60	4.23	0.00	
L	23.47	21.56	18.61	15.89	12.94	9.98	1
Inventory RF	4.039	1.738	2.151	2.677	3.492	4.780	1
Operating RF	6.741	2.902	3.590	4.468	5.829	7.979	

<u>e KC-2 - 165,000 lb</u>	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
VLL max. (STAAD - axle load)	72.57	67.15	57.99	48.84	39.68	30.53	k
VLL (per beam with impact)	23.45	21.69	18.73	15.78	12.82	9.86	k
Vs (total unfactored)	43.23	38.75	31.56	24.38	17.05	9.86	k
Vult (total factored)	76.62	69.27	57.35	45.44	33.32	21.41	k
V @ Mmax (axle)	68.45	0.00	0.00	0.00	0.00	0.00	k
Vi (factored from externally ap	43.12	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
							1
MLL max (STAAD - axle load)	107.41	301.02	520.90	670.71	765.03	780.25	k-ft
MLL (per beam with impact)	34.70	97.25	168.28	216.68	247.15	252.07	k-ft
Ms	67.51	183.84	322.53	419.62	479.84	495.56	k-ft
Mult	117.98	323.70	565.86	734.24	839.06	863.78	k-ft
Mmax (factored from external	85.34	237.54	412.39	532.31	607.54	621.51	k-ft
	0.126	0 114	0.004	0.074	0.055	0.025	Vult/bld kai
vu	0.120	0.114	0.094	0.074	0.055	0.035	
	0.357	0.081	0.067	0.058	0.050	0.042	KSI
	0.120	0.120	0.120	0.120	0.120	0.120	
VCI USED	0.357	0.120	0.120	0.120	0.120	0.120	
$\phi = 0.90$							
$\phi vn = \phi(vs+vc)$	0.379	0.170	0.170	0.170	0.170	0.170	ksi
C	231.4	103.5	103.5	103.5	103.5	103.5	k
D	19.79	17.05	12.83	8.60	4.23	0.00	
L	23.45	21.69	18.73	15.78	12.82	9.86	
Inventory RF	4.044	1.728	2.136	2.697	3.524	4.836	1
Operating RF	6.750	2.884	3.566	4.501	5.882	8.073	1

February 19, 2016

Structure Rating Calculations

Load Rating PerformedELN3/29/2016Load Rating CheckedAMS4/20/2016

KC-3 - 140,000 lb	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
VLL max. (STAAD - axle load)	77.46	69.93	57.22	46.09	37.83	30.18	k
VLL (per beam with impact)	25.03	22.59	18.49	14.89	12.22	9.75	k
Vs (total unfactored)	44.81	39.65	31.31	23.49	16.45	9.75	k
Vult (total factored)	80.05	71.22	56.81	43.51	32.03	21.17	k
V @ Mmax (axle)	67.78	0.00	0.00	0.00	0.00	0.00	1
Vi (factored from externally ap	42.76	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
MLL max (STAAD - axle load)	106.36	313.50	516 60	656.27	714.15	738 25	k-ft
MLL (per beam with impact)	34.36	101.28	166.89	212.02	230.72	238.50	k-ft
Ms	67.17	187.88	321.14	414.96	463.40	481.99	k-ft
Mult	117.25	332.45	562.84	724.11	803.38	834.32	k-ft
Mmax (factored from externall	84.60	246.29	409.37	522.19	571.86	592.05	k-ft
VU	0.131	0.117	0.093	0 071	0.053	0.035	Vult/b'd ksi
vci	0.357	0.080	0.067	0.058	0.050	0.042	
vci minimum	0.120	0.120	0.120	0.120	0.120	0.120	
vci used	0.357	0.120	0.120	0.120	0.120	0.120	
φ = 0.90						•	
$\phi vn = \phi (vs + vc)$	0.379	0.170	0.170	0.170	0.170	0.170	ksi
С	231.4	103.5	103.5	103.5	103.5	103.5	k
D	19.79	17.05	12.83	8.60	4.23	0.00	1
L	25.03	22.59	18.49	14.89	12.22	9.75	1
Inventory RF	3.788	1.659	2.165	2.858	3.696	4.892	1
Operating RF	6.323	2.770	3.614	4.770	6.169	8.167	

KC-4 - 115,000 lb	0.035	0.1	0.2	0.3	0.4	0.5	along span
	1.59	4.48	8.97	13.45	17.93	22.42	ft
VLL max. (STAAD - axle load)	63.16	56.39	46.22	38.25	31.64	24.71	k
VLL (per beam with impact)	20.41	18.22	14.93	12.36	10.22	7.98	k
Vs (total unfactored)	40.19	35.27	27.76	20.96	14.45	7.98	k
Vult (total factored)	70.02	61.72	49.09	38.01	27.69	17.33	k
V @ Mmax (axle)	38.11	0.00	0.00	0.00	0.00	0.00	
Vi (factored from externally ap	26.68	5.20	3.91	2.62	1.29	0.00	PCM 1.1.9
	00.00	050.00	440.05	540.44	570.07		li. a
MLL max (STAAD - axie load)	98.29	252.80	416.25	516.44	5/3.07	595.55	κ-π
MLL (per beam with impact)	31.75	81.67	134.48	166.84	185.14	192.40	k-ft
Ms	64.56	168.27	288.72	369.78	417.82	435.89	k-ft
Mult	111.59	289.88	492.46	626.04	704.43	734.23	k-ft
Mmax (factored from externally	78.94	203.72	338.99	424.11	472.91	491.97	k-ft
MI	0 1 1 5	0 101	0.080	0.062	0.045	0.028	Vult/b'd kei
vci	0.264	0.082	0.068	0.058	0.050	0.020	value a tor
vci minimum	0.120	0.120	0.120	0.120	0.120	0.120	
vci used	0.264	0.120	0.120	0.120	0.120	0.120	
$\phi = 0.90$	•	•				•	
$\phi vn = \phi(vs+vc)$	0.299	0.170	0.170	0.170	0.170	0.170	ksi
С	182.2	103.5	103.5	103.5	103.5	103.5	k
D	19.79	17.05	12.83	8.60	4.23	0.00	
L	20.41	18.22	14.93	12.36	10.22	7.98	
Inventory RF	3.534	2.058	2.680	3.443	4.419	5.976	
Operating RF	5.899	3.435	4.473	5.748	7.376	9.975	

Silver Glen Road over Otter Creek

Structure No. 045-3122

February 19, 2016

Structure Rating Calculations

Load Rating PerformedELN3/29/2016Load Rating CheckedAMS4/20/2016

1.59 4.48 8.97 13.45 17.93 22.42 ft VLL max. (STAAD - axle load) 52.49 47.57 40.04 32.68 24.69 16.90 k VLL (per beam with impact) 16.96 15.37 12.94 10.56 7.98 5.46 k Vs (total unfactored) 36.74 32.42 25.76 19.16 12.20 5.46 k Vuit (total factored) 62.53 55.53 44.76 34.10 22.81 11.85 k V@ Mmax (axle) 44.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PCM MLL max (STAAD - axle load) 82.07 213.37 387.58 522.56 610.04 632.56 k-ft MLL (per beam with impact) 26.51 68.93 125.21 168.82 197.08 204.36 k-ft Ms 59.32 155.53 279.45 371.76 429.77	1.1.9
VLL max. (STAAD - axle load) 52.49 47.57 40.04 32.68 24.69 16.90 k VLL (per beam with impact) 16.96 15.37 12.94 10.56 7.98 5.46 k Vs (total unfactored) 36.74 32.42 25.76 19.16 12.20 5.46 k Vult (total factored) 62.53 55.53 44.76 34.10 22.81 11.85 k V@ Mmax (axle) 44.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PCM MLL max (STAAD - axle load) 82.07 213.37 387.58 522.56 610.04 632.56 k-ft MLL (per beam with impact) 26.51 68.93 125.21 168.82 197.08 204.36 k-ft Ms 59.32 155.53 279.45 371.76 429.77 447.84 k-ft Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft	1.1.9
VLL (per beam with impact) 16.96 15.37 12.94 10.56 7.98 5.46 k Vs (total unfactored) 36.74 32.42 25.76 19.16 12.20 5.46 k Vult (total factored) 62.53 55.53 44.76 34.10 22.81 11.85 k V@ Mmax (axle) 44.45 0.00 0.00 0.00 0.00 0.00 k Vi (factored from externally ap 30.12 5.20 3.91 2.62 1.29 0.00 PCM MLL max (STAAD - axle load) 82.07 213.37 387.58 522.56 610.04 632.56 k-ft MLL (per beam with impact) 26.51 68.93 125.21 168.82 197.08 204.36 k-ft Ms 59.32 155.53 279.45 371.76 429.77 447.84 k-ft Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft Mmax (factored from externall) 67.57 176.06	1.1.9
Vs (total unfactored) 36.74 32.42 25.76 19.16 12.20 5.46 k Vult (total factored) 62.53 55.53 44.76 34.10 22.81 11.85 k V @ Mmax (axle) 44.45 0.00 0.00 0.00 0.00 0.00 k Vi (factored from externally ap 30.12 5.20 3.91 2.62 1.29 0.00 PCM MLL max (STAAD - axle load) 82.07 213.37 387.58 522.56 610.04 632.56 k-ft MLL (per beam with impact) 26.51 68.93 125.21 168.82 197.08 204.36 k-ft Ms 59.32 155.53 279.45 371.76 429.77 447.84 k-ft Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft Mmax (factored from externall) 67.57 176.06 318.88 428.41 498.84 517.92 k-ft Vu 0.103 0.091 0.0	1.1.9
Vult (total factored) 62.53 55.53 44.76 34.10 22.81 11.85 k V @ Mmax (axle) 44.45 0.00	1.1.9
V @ Mmax (axle) 44.45 0.00 PCM MLL max (STAAD - axle load) 82.07 213.37 387.58 522.56 610.04 632.56 k-ft MLL (per beam with impact) 26.51 68.93 125.21 168.82 197.08 204.36 k-ft Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft Mmax (fact	1.1.9
Vi (factored from externally ap 30.12 5.20 3.91 2.62 1.29 0.00 PCM MLL max (STAAD - axle load) 82.07 213.37 387.58 522.56 610.04 632.56 k-ft MLL (per beam with impact) 26.51 68.93 125.21 168.82 197.08 204.36 k-ft Ms 59.32 155.53 279.45 371.76 429.77 447.84 k-ft Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft Mmax (factored from externall 67.57 176.06 318.88 428.41 498.84 517.92 k-ft vu 0.103 0.091 0.073 0.056 0.037 0.019 vut// vci 0.324 0.084 0.068 0.058 0.050 0.042 vei minimum 0.120 0.120 0.120 0.120 0.120 0.120	11.1.9
MLL max (STAAD - axle load) 82.07 213.37 387.58 522.56 610.04 632.56 k-ft MLL (per beam with impact) 26.51 68.93 125.21 168.82 197.08 204.36 k-ft Ms 59.32 155.53 279.45 371.76 429.77 447.84 k-ft Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft Mmax (factored from externall 67.57 176.06 318.88 428.41 498.84 517.92 k-ft vu 0.103 0.091 0.073 0.056 0.037 0.019 vut/u vci 0.324 0.084 0.068 0.058 0.050 0.042 vci minimum 0.120 0.120 0.120 0.120 0.120 0.120	
WLL Inax (31 AAD - axteroad) 32.07 213.37 387.36 322.30 010.04 032.30 k-ft MLL (per beam with impact) 26.51 68.93 125.21 168.82 197.08 204.36 k-ft Ms 59.32 155.53 279.45 371.76 429.77 447.84 k-ft Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft Mmax (factored from externall 67.57 176.06 318.88 428.41 498.84 517.92 k-ft vu 0.103 0.091 0.073 0.056 0.037 0.019 vut// vci 0.324 0.084 0.068 0.058 0.050 0.042 vci minimum 0.120 0.120 0.120 0.120 0.120 0.120	
Will (per beam with impact) 26.31 66.93 123.21 168.62 197.06 204.36 k-ft Ms 59.32 155.53 279.45 371.76 429.77 447.84 k-ft Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft Mmax (factored from externall) 67.57 176.06 318.88 428.41 498.84 517.92 k-ft vu 0.103 0.091 0.073 0.056 0.037 0.019 k-ft vci 0.324 0.084 0.068 0.058 0.050 0.042 vci minimum 0.120 0.120 0.120 0.120 0.120 0.120	
Ms 59.32 155.53 279.45 371.76 429.77 447.84 k-ft Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft Mmax (factored from externall) 67.57 176.06 318.88 428.41 498.84 517.92 k-ft vu 0.103 0.091 0.073 0.056 0.037 0.019 vult/ vci 0.324 0.084 0.068 0.058 0.050 0.042 vci minimum 0.120 0.120 0.120 0.120 0.120 0.120 0.120	
Mult 100.21 262.23 472.35 630.33 730.36 760.19 k-ft Mmax (factored from externally 67.57 176.06 318.88 428.41 498.84 517.92 k-ft vu 0.103 0.091 0.073 0.056 0.037 0.019 Vult/ vci 0.324 0.084 0.068 0.058 0.050 0.042 vci vci minimum 0.120 0.120 0.120 0.120 0.120 0.120	
Mmax (factored from externall) 67.57 176.06 318.88 428.41 498.84 517.92 k-ft vu 0.103 0.091 0.073 0.056 0.037 0.019 Vult/ vci 0.324 0.084 0.068 0.058 0.050 0.042 vci minimum 0.120 0.120 0.120 0.120 0.120 0.120	
vu 0.103 0.091 0.073 0.056 0.037 0.019 Vult/ vci 0.324 0.084 0.068 0.058 0.050 0.042 vci minimum 0.120 0.120 0.120 0.120 0.120 0.120	
vci 0.324 0.084 0.068 0.058 0.050 0.042 vci minimum 0.120 0.120 0.120 0.120 0.120 0.120	b'd ksi
vci minimum 0.120 0.120 0.120 0.120 0.120 0.120	
vci used 0.324 0.120 0.120 0.120 0.120 0.120	
$\phi = 0.90$	
C 215.2 103.5 103.5 103.5 103.5 103.5 k	
D 19.79 17.05 12.83 8.60 4.23 0.00	
L 16.96 15.37 12.94 10.56 7.98 5.46	
Inventory RF 5.150 2.439 3.094 4.030 5.663 8.737	
Operating RF 8.597 4.072 5.164 6.727 9.453 14.584	

February 19, 2016

Structure Rating Calculations

Load Rating Performed	ELN	3/29/2016
Load Rating Checked	AMS	4/20/2016

SPECIAL PERMIT VEHICLES 3-(1) 6-7-0-13'-0 1-0" 4-0 SPECIAL VEHICLE - KC I SPECIAL VEHICLE - KC 2 4-5-6 3 4'-0" 1 1 SPECIAL VEHICLE - KC 3 2-3 ŧ 1 SPECIAL VEHICLE -KC

Codes Used:

- 1: Standard Specifications for Highway Bridges, 17th Ed. AASHTO 2: Manual for Bridge Evaluation, 2nd Ed. With 2013 Interim Revisions AASHTO
- 3: Prestressed Concrete Manual, 1994 IDOT
- 4: Structural Services Manual, Section 4, Feb. 2013 IDOT

Collins Engin	eers, Inc.
Appendix F	Page 14