INDEX

FOR SUPPLEMENTAL SPECIFICATIONS AND RECURRING SPECIAL PROVISIONS

Adopted January 1, 2013

This index contains a listing of SUPPLEMENTAL SPECIFICATIONS and frequently used RECURRING SPECIAL PROVISIONS, and LOCAL ROADS AND STREETS RECURRING SPECIAL PROVISIONS.

ERRATA Standard Specifications for Road and Bridge Construction (Adopted 1-1-12) (Revised 1-1-13)

SUPPLEMENTAL SPECIFICATIONS

Std. Sp	<u>bec. Sec.</u>	<u>Page No.</u>
105	Control of Work	1
107	Legal Regulations and Responsibility to Public	2
202	Earth and Rock Excavation	4
211	Topsoil and Compost	5
407	Hot-Mix Asphalt Pavement (Full-Depth)	6
420	Portland Cement Concrete Pavement	10
424	Portland Cement Concrete Sidewalk	12
503	Concrete Structures	13
504	Precast Concrete Structures	14
540	Box Culverts	15
603	Adjusting Frames and Grates of Drainage and Utility Structures	16
610	Shoulder Inlet with Curb	18
642	Shoulder Rumble Strips	19
643	Impact Attenuators	20
701	Work Zone Traffic Control and Protection	22
706	Impact Attenuators, Temporary	24
780	Pavement Striping	26
860	Master Controller	27
1006	Metals	28
1042	Precast Concrete Products	29
1073	Controller	30
1083	Elastomeric Bearings	31
1101	General Equipment	32
1106	Work Zone Traffic Control Devices	34

CHECK SHEET FOR RECURRING SPECIAL PROVISIONS

Adopted January 1, 2013

The following RECURRING SPECIAL PROVISIONS indicated by an "X" are applicable to this contract and are included by reference:

RECURRING SPECIAL PROVISIONS

PAGE NO.

CHECK SHEE	<u>PAGE</u>	E NO
1 🗌	Additional State Requirements For Federal-Aid Construction Contracts	
	(Eff. 2-1-69) (Rev. 1-1-10)	35
2 🗌	Subletting of Contracts (Federal-Aid Contracts) (Eff. 1-1-88) (Rev. 5-1-93)	38
3 🗍	EEO (Eff. 7-21-78) (Rev. 11-18-80)	
4 🔲	Specific Equal Employment Opportunity Responsibilities Non Federal-Aid	
	Contracts (Eff. 3-20-69) (Rev. 1-1-94)	49
5 🗌	Required Provisions - State Contracts (Eff. 4-1-65) (Rev. 1-1-13)	
6 🔲	Asbestos Bearing Pad Removal (Eff. 11-1-03)	
7	Asbestos Waterproofing Membrane and Hot-Mix Asphalt	
_	Surface Removal (Eff. 6-1-89) (Rev. 1-1-09)	60
8 🗌	Haul Road Stream Crossings, Other Temporary Stream Crossings, and	
	In-Stream Work Pads (Eff. 1-2-92) (Rev. 1-1-98)	61
9 🗌	Construction Layout Stakes Except for Bridges (Eff. 1-1-99) (Rev. 1-1-07)	
10 🔲	Construction Layout Stakes (Eff. 5-1-93) (Rev. 1-1-07)	65
11 🔲	Use of Geotextile Fabric for Railroad Crossing (Eff. 1-1-95) (Rev. 1-1-07)	
12 🔲	Subsealing of Concrete Pavements (Eff. 11-1-84) (Rev. 1-1-07)	70
13 🗌	Hot-Mix Asphalt Surface Correction (Eff. 11-1-87) (Rev. 1-1-09)	
14 🗌	Pavement and Shoulder Resurfacing (Eff. 2-1-00) (Rev. 1-1-09)	76
15 🔲	PCC Partial Depth Hot-Mix Asphalt Patching (Eff. 1-1-98) (Rev. 1-1-07)	77
16 🗌	Patching with Hot-Mix Asphalt Overlay Removal (Eff. 10-1-95) (Rev. 1-1-07)	79
17 🔲	Polymer Concrete (Eff. 8-1-95) (Rev. 1-1-08)	
18 🗌	PVC Pipeliner (Eff. 4-1-04) (Rev. 1-1-07)	82
19 🔲	Pipe Underdrains (Eff. 9-9-87) (Rev. 1-1-07)	83
20 🔲	Guardrail and Barrier Wall Delineation (Eff. 12-15-93) (Rev. 1-1-12)	84
21 🗌	Bicycle Racks (Eff. 4-1-94) (Rev. 1-1-12)	
22 🗌	Temporary Modular Glare Screen System (Eff. 1-1-00) (Rev. 1-1-07)	90
23 🗌	Temporary Portable Bridge Traffic Signals (Eff. 8-1-03) (Rev. 1-1-07)	92
24 🗌	Work Zone Public Information Signs (Eff. 9-1-02) (Rev. 1-1-07)	94
25 🗌	Night Time Inspection of Roadway Lighting (Eff. 5-1-96)	95
26 🗌	English Substitution of Metric Bolts (Eff. 7-1-96)	
27 🗌	English Substitution of Metric Reinforcement Bars (Eff. 4-1-96) (Rev. 1-1-03)	97
28 🗌	Calcium Chloride Accelerator for Portland Cement Concrete (Eff. 1-1-13)	98
29 🔲	Portland Cement Concrete Inlay or Overlay for Pavements (Eff. 11-1-08) (Rev. 1-1-13)	99
30 🗌	Quality Control of Concrete Mixtures at the Plant (Eff. 8-1-00) (Rev. 1-1-11)	102
31 🗌	Quality Control/Quality Assurance of Concrete Mixtures (Eff. 4-1-92) (Rev. 1-1-11)	110
32 🗌	Digital Terrain Modeling for Earthwork Calculations (Eff. 4-1-07).	122

CHECK SHEET FOR LOCAL ROADS AND STREETS RECURRING SPECIAL PROVISIONS

Adopted January 1, 2013

The following LOCAL ROADS AND STREETS RECURRING SPECIAL PROVISIONS indicated by an "X" are applicable to this contract and are included by reference:

LOCAL ROADS AND STREETS RECURRING SPECIAL PROVISIONS

CHECK :	SHEE	<u>ET #</u>	PAGE NO.
LRS 1		Reserved	125
LRS 2		Furnished Excavation (Eff. 1-1-99) (Rev. 1-1-07)	126
LRS 3		Work Zone Traffic Control (Eff. 1-1-99) (Rev. 1-1-10)	
LRS 4		Flaggers in Work Zones (Eff. 1-1-99) (Rev. 1-1-07)	
LRS 5		Contract Claims (Eff. 1-1-02) (Rev. 1-1-07)	
LRS 6		Bidding Requirements and Conditions for Contract Proposals (Eff. 1-1-02) (Rev. 1-1-13)	
LRS 7		Bidding Requirements and Conditions for Material Proposals (Eff. 1-1-02) (Rev. 1-1-13)	136
LRS 8		Reserved	
LRS 9		Bituminous Surface Treatments (Eff. 1-1-99) (Rev. 1-1-11)	143
LRS 10		Reserved	
LRS 11		Employment Practices (Eff. 1-1-99)	145
LRS 12		Wages of Employees on Public Works (Eff. 1-1-99) (Rev. 1-1-13)	
LRS 13		Selection of Labor (Eff. 1-1-99)(Rev. 1-1-12)	
LRS 14		Paving Brick and Concrete Paver Pavements and Sidewalks (Eff. 1-1-04) (Rev. 1-1-09)	
LRS 15	\Box	Partial Payments (Eff. 1-1-07)	
LRS 16	Π	Protests on Local Lettings (Eff. 1-1-07) (Rev. 1-1-13)	
LRS 17		Substance Abuse Prevention Program (Eff. 1-1-08)(Rev. 1-8-08)	
LRS 18	\Box	Multigrade Cold Mix Asphalt (Eff. 1-1-07) (Rev. 1-1-13)	

BDE SPECIAL PROVISIONS For the November 8, 2013 Letting

The following special provisions indicated by an "x" are applicable to this contract and will be included by the Project Development and Implementation Section of the BD&E. An * indicates a new or revised special provision for the letting.

File Name	<u>e #</u>	Special Provision Title	<u>Effective</u>	<u>Revised</u>
80240		Above Grade Inlet Protection	July 1, 2009	Jan. 1, 2012
80099	2	Accessible Pedestrian Signals (APS)	April 1, 2003	Jan. 1, 2007
80274	13	Aggregate Subgrade Improvement	April 1, 2012	Jan. 1, 2013
80309	94	Anchor Bolts	Jan. 1, 2013	
80192		Automated Flagger Assistance Device	Jan. 1, 2008	
80173		Bituminous Materials Cost Adjustments	Nov. 2, 2006	Aug. 1, 2013
8024		Bridge Demolition Debris	July 1, 2009	· J , · · ·
80276		Bridge Relief Joint Sealer	Jan. 1, 2012	Aug. 1, 2012
50261		Building Removal-Case I (Non-Friable and Friable Asbestos)	Sept. 1, 1990	April 1, 2010
50481		Building Removal-Case II (Non-Friable Asbestos)	Sept. 1, 1990	April 1, 2010
50491		Building Removal-Case III (Friable Asbestos)	Sept. 1, 1990	April 1, 2010
50531		Building Removal-Case IV (No Asbestos)	Sept. 1, 1990	April 1, 2010
80292		Coarse Aggregate in Bridge Approach Slabs/Footings	April 1, 2012	April 1, 2013
80310		Coated Galvanized Steel Conduit	Jan. 1, 2013	- ,
80198		Completion Date (via calendar days)	April 1, 2008	
80199		Completion Date (via calendar days) Plus Working Days	April 1, 2008	
80293		Concrete Box Culverts with Skews > 30 Degrees and Design Fills ≤ 5	April 1, 2012	
00200			· .p , _•	
80294	18	Concrete Box Culverts with Skews ≤ 30 Degrees Regardless of	April 1, 2012	
		Design Fill and Skews > 30 Degrees with Design Fills > 5 Feet		
80311	I 19	Concrete End Sections for Pipe Culverts	Jan. 1, 2013	
80277		Concrete Mix Design – Department Provided	Jan. 1, 2012	
80262	1 21	Construction Air Quality – Diesel Retrofit	June 1, 2010	
80029	22	Disadvantaged Business Enterprise Participation	Sept. 1, 2000	Aug. 2, 2011
80312	2 23	Drain Pipe, Tile, Drainage Mat, and Wall Drain	Jan. 1, 2013	0
80313	3 24	Fabric Bearing Pads	Jan. 1, 2013	
80265		Friction Aggregate	Jan. 1, 2011	
80229	26	Fuel Cost Adjustment	April 1, 2009	July 1, 2009
80303	3 27	Granular Materials	Nov. 1, 2012	•
80304	1 28	Grooving for Recessed Pavement Markings	Nov. 1, 2012	Jan. 1, 2013
80169	9 29	High Tension Cable Median Barrier	Jan. 1, 2007	Jan. 1, 2013
80246	30	Hot-Mix Asphalt – Density Testing of Longitudinal Joints	Jan. 1, 2010	April 1, 2012
* 80322	2 31	Hot-Mix Asphalt – Mixture Design Composition and Volumetric	Nov. 1, 2013	
		Requirements		
* 80323	3 32	Hot-Mix Asphalt – Mixture Design Verification and Production	Nov. 1, 2013	
* 80315	5 33	Insertion Lining of Culverts	Jan. 1, 2013	Nov. 1, 2013
80320) 34	Liquidated Damages	April 1, 2013	
* 80324	4 35	LRFD Pipe Culvert Burial Tables	Nov. 1, 2013	
* 80325	5 36	LRFD Storm Sewer Burial Tables	Nov. 1, 2013	
80045	5 37	Material Transfer Device	June 15, 1999	Jan. 1, 2009
80297	7 38	Modified Urethane Pavement Marking	April 1, 2012	
80165	5 39	Moisture Cured Urethane Paint System	Nov. 1, 2006	Jan. 1, 2010
80253	3 40	Movable Traffic Barrier	Jan. 1, 2010	Jan. 1, 2013
80232	41	Pavement Marking Removal	April 1, 2009	
80298	3 42	Pavement Marking Tape Type IV	April 1, 2012	
80254	43	Pavement Patching	Jan. 1, 2010	
80322	44	Pavement Removal	April 1, 2013	

Fil	e Name	<u>#</u>	Special Provision Title	Effective	<u>Revised</u>
	80022		Payments to Subcontractors	June 1, 2000	Jan. 1, 2006
	80316	46	Placing and Consolidating Concrete	Jan. 1, 2013	
	80278	47	Planting Woody Plants	Jan. 1, 2012	Aug. 1, 2012
	80305	48	Polyurea Pavement Markings	Nov. 1, 2012	Jan. 1, 2013
*	80279	49	Portland Cement Concrete	Jan. 1, 2012	Nov. 1, 2013
*	80326	50	Portland Cement Concrete Equipment	Nov. 1, 2013	
	80300	51	Preformed Plastic Pavement Marking Type D - Inlaid	April 1, 2012	
	80218	52	Preventive Maintenance – Bituminous Surface Treatment	Jan. 1, 2009	April 1, 2012
	80219	53	Preventive Maintenance – Cape Seal	Jan. 1, 2009	April 1, 2012
	80220	54	Preventive Maintenance – Micro-Surfacing	Jan. 1, 2009	April 1, 2012
	80221	55	Preventive Maintenance – Slurry Seal	Jan. 1, 2009	April 1, 2012
*	80281	56	Quality Control/Quality Assurance of Concrete Mixtures	Jan. 1, 2012	Nov. 1, 2013
	34261	57	Railroad Protective Liability Insurance	Dec. 1, 1986	Jan. 1, 2006
	80157	58	Railroad Protective Liability Insurance (5 and 10)	Jan. 1, 2006	
*	80306	59	Reclaimed Asphalt Pavement (RAP) and Reclaimed Asphalt	Nov. 1, 2012	Nov. 1, 2013
			Shingles (RAS)		
*	80327	60	Reinforcement Bars	Nov. 1, 2013	
	80283	61	Removal and Disposal of Regulated Substances	Jan. 1, 2012	Nov. 2, 2012
	80319	62	Removal and Disposal of Surplus Materials	Nov. 2, 2012	
	80224	63	Restoring Bridge Approach Pavements Using High-Density Foam	Jan. 1, 2009	Jan. 1, 2012
	80307	64	Seeding	Nov. 1, 2012	
	80127	65	Steel Cost Adjustment	April 2, 2004	April 1, 2009
	80255	66	Stone Matrix Asphalt	Jan. 1, 2010	Aug. 1, 2013
	80143	67	Subcontractor Mobilization Payments	April 2, 2005	April 1, 2011
	80317	68	Surface Testing of Hot-Mix Asphalt Overlays (NOTE: This special	Jan. 1, 2013	
			provision was previously named "Surface Testing of Pavements".)		
	80308	69	Synthetic Fibers in Concrete Gutter, Curb, Median and Paved Ditch	Nov. 1, 2012	
	80286	70	Temporary Erosion and Sediment Control	Jan. 1, 2012	
	80225	71	Temporary Raised Pavement Marker	Jan. 1, 2009	
	80256	72	Temporary Water Filled Barrier	Jan. 1, 2010	Jan. 1, 2013
	80301	73	Tracking the Use of Pesticides	Aug. 1, 2012	
	80273	74	Traffic Control Deficiency Deduction	Aug. 1, 2011	
	20338	75	Training Special Provisions	Oct. 15, 1975	
	80318	76	Traversable Pipe Grate	Jan. 1, 2013	April 1, 2013
		77	Utility Coordination and Conflicts	April 1, 2011	Jan. 1, 2012
*	80288	78	Warm Mix Asphalt	Jan. 1, 2012	Nov. 1, 2013
		79	Weekly DBE Trucking Reports	June 2, 2012	
	80289	80	Wet Reflective Thermoplastic Pavement Marking	Jan. 1, 2012	
	80071	81	Working Days	Jan. 1, 2002	

The following special provisions have been deleted from use:

80271 Safety Edge

The following special provisions are either in the 2013 Standard Specifications, the 2013 Recurring Special Provisions, or the special provisions Portland Cement Concrete, QC/QA of Concrete Mixtures, or Placing and Consolidating Concrete:

File Name	Special Provision Title	New Location	Effective	Revised
80275	Agreement to Plan Quantity	Article 202.07	Jan. 1, 2012	
80291	Calcium Chloride Accelerator for Class PP-2	Recurring CS #28	April 1, 2012	
	Concrete	-	-	
80237	Construction Air Quality – Diesel Vehicle Emissions	Articles 105.03 and 107.41	April 1, 2009	Jan. 2, 2012
	Control			
80239	Construction Air Quality – Idling Restrictions	Articles 105.03 and 107.41	April 1, 2009	

<u>File Name</u> 80177	Special Provision Title Digital Terrain Modeling for Earthwork Calculations	New Location Recurring CS #32	<u>Effective</u> April 1, 2007	Revised
80272 80228	Drainage and Inlet Protection Under Traffic Flagger at Side Roads and Entrances	Articles 603.02 and 603.07 Articles 701.13 and 701.20	April 1, 2007 April 1, 2011 April 1, 2009	Jan. 1, 2012
80109	Impact Attenuators	Section 643	Nov. 1, 2003	Jan. 1, 2012
80110	Impact Attenuators, Temporary	Section 706	Nov. 1, 2003	Jan. 1, 2012
80203	Metal Hardware Cast into Concrete	Articles 503.02, 504.02, and 1006.13	April 1, 2008	Jan. 1, 2012
80290	Payrolls and Payroll Records	Recurring CS #5	Jan. 2, 2012	
80299	Portland Cement Concrete Inlay or Overlay	Recurring CS #29	April 1, 2012	
80280	Portland Cement Concrete Sidewalk	Article 424.07	Jan. 1, 2012	
80152	Self-Consolidating Concrete for Cast-In-Place Construction	The following special provisions: Portland Cement	Nov. 1, 2005	April 1, 2012
	Construction	Concrete, QC/QA of		
		Concrete Mixtures and		
		Placing and Consolidating		
		Concrete		
80132	Self-Consolidating Concrete for Precast and Precast	The following special	July 1, 2004	April 1, 2012
	Prestressed Products	provisions: Portland Cement		
		Concrete, QC/QA of		
		Concrete Mixtures and		
		Placing and Consolidating		
80284	Shouldor Dumble String	Concrete	lon 1 2012	
80285	Shoulder Rumble Strips Sidewalk, Corner or Crosswalk Closure	Article 642.05 Articles 701.03, 701.15, and	Jan. 1, 2012 Jan. 1, 2012	
00205	Sidewaik, Comer of Crosswaik Closure	1106.02	Jan. 1, 2012	
80075	Surface Testing of Pavements (Section 406 overlay	Articles 407.09, 407.12,	April 1, 2002	Jan. 1, 2007
	portion will remain a special provision and will now be called "Surface Testing of HMA Overlays".)	420.10, 420.20, and 1101.10	•	
80287	Type G Inlet Box	Article 610.09	Jan. 1, 2012	

The following special provisions require additional information from the designer. The additional information needs to be included in a separate document attached to this check sheet. The Project Development and Implementation section will then include the information in the applicable special provision. The Special Provisions are:

Bridge Demolition DebrisBuilding Removal-Case I

•

•

Building Removal-Case II

- Building Removal-Case IV
- Completion Date
 - Completion Date Plus Working Days
- Building Removal-Case III DBE Participation

- Material Transfer Device
- Railroad Protective Liability Insurance
- Training Special Provisions
- Working Days

INDEX OF SPECIAL PROVISIONS

	Page No.
LOCATION OF IMPROVEMENT	3
DESCRIPTION OF PROJECT	3
CONTROL OF WORK	3
TEMPORARY INFORMATION SIGNING	4
AGGREGATE SURFACE COURSE FOR TEMPORARY ACCESS	5
MAINTENANCE OF ROADWAYS	6
TRAFFIC CONTROL PLAN	7
MAINTENANCE OF TRAFFIC	7
FINE AGGREGATE FOR HOT-MIX ASPHALT (HMA) (D-1)	8
STATUS OF UTILITIES TO BE ADJUSTED	8
RECLAIMED ASPHALT PAVEMENT AND RECLAIMED ASPHALT SHINGLES (D-1)	9
INCORPORATIONS	21
DIRECT DEPOSIT	21
INSURANCE	21
PREQUALIFICATIONS OF BIDDERS	22
PREVAILING WAGES	22
RECESSED REFLECTIVE PAVEMENT MARKERS	23
HOT MIX ASPHALT SURFACE REMOVAL – BUTT JOINT AND TEMPORARY RAMP	24
HOT-MIX ASPHALT DRIVEWAY PAVEMENT	24
INCIDENTAL HOT-MIX ASPHALT SURFACING	25

PIPE CULVERT REMOVAL	25
DUST CONTROL WATERING	26
SUPPLEMENTAL WATERING	26
CONSTRUCTION LAYOUT	27
REMOVE EXISTING FLARED END SECTION	27

SPECIAL PROVISIONS

The following Special Provisions supplement the "Standard Specifications for Road and Bridge Construction," Adopted January 1, 2012, (hereinafter referred to as the Standard Specifications); the latest edition of the "Illinois Manual on Uniform Traffic Control Devices for Streets and Highways"; and the Manual of Test Procedures for Materials" in effect on the date of invitation for bids; and the Supplemental Specifications and Recurring Special Provisions" indicated on the Check Sheet included herein, which apply to and govern the widening and resurfacing of County Highway 10 (Main Street), Section 08-00378-00-CH, Kane County, Job Number C-91-165-09, Project No. CMM-9003(138), Contract No. xxxxx, and in case of conflict with any part or parts of said specifications, the said Special Provision shall take precedence and shall govern.

LOCATION OF IMPROVEMENT

The project begins at a point on the reference centerline of CH 10 (Main Street) at Station 664+29 (west of Nelson Lake Road) and extends in the easterly direction to Station 675+69 (east of Nelson Lake Road). The total length of the improvements along Main Street is approximately 1,140 feet. The project also includes the reconstruction of approximately 325 feet of Nelson Lake Road.

DESCRIPTION OF IMPROVEMENT

The project consists of the widening and resurfacing of Main Street to provide and exclusive westbound left turn lane at the intersection of Nelson Lake Road. Also, Nelson Lake Road will be reconstructed to provide northbound turn lanes at the T-intersection with Main Street. Included in the project is construction of curb and gutter, driveway replacement, utility structure adjustments and reconstruction, temporary and permanent signing and pavement markings, and replacement of an existing across road pipe culvert.

CONTROL OF WORK

This special provision amends the provisions of the Standard Specifications and shall be construed to be a part thereof, superseding any conflicting provisions thereof applicable to the work under the contract.

105.09 <u>Survey Control Points.</u> Revise the first sentence to read:

"Survey control points shown on the drawings will be reestablished by the Contractor unless specified otherwise in the contract, to establish the horizontal and vertical control required for construction of the various contract items of work."

105.10 <u>Authority and Duties of Resident Engineer.</u> Delete the first sentence and revise the second sentence to read:

"The Resident Engineer has the authority to recommend rejection of defective work or material and/or suspension of any work being improperly performed. Only the Engineer has authority to reject defective work or material or to suspend any work improperly performed."

TEMPORARY INFORMATION SIGNING

Effective: November 13, 1996

Revised: January 2, 2007

<u>Description</u>: This work shall consist of furnishing, installing, maintaining, relocating for various states of construction and eventually removing temporary informational signs. Included in this item may be ground mount signs, skid mount signs, truss mount signs, bridge mount signs, and overlay sign panels which cover portions of existing signs.

Materials: Materials shall be according to the following Articles of Section 1000 - Materials:

	ltem	Article/Section
a.)	Sign Base (Notes 1 & 2)	1090
b.)	Sign Face (Note 3)	1091
c.)	Sign Legends	1092
d.)	Sign Supports	1093
e.)	Overlay Panels (Note 4)	1090.02

- Note 1. The Contractor may use 5/8 inch (16 mm) instead of 3/4 inch (19 mm) thick plywood.
- Note 2. Type A sheeting can be used on the plywood base.
- Note 3. All sign faces shall be Type A except all orange signs shall meet the requirements of Article 1106.01.
- Note 4. The overlay panels shall be 0.08 inch (2 mm) thick.

GENERAL CONSTRUCTION REQUIRMENTS

Installation: The sign sizes and legend sizes shall be verified by the Contractor prior to fabrication.

Signs which are placed along the roadway and/or within the construction zone shall be installed according to the requirements of Article 701.14 and Article 720.04. The signs shall be 7 ft (2.1 m) above the near edge of the pavement and shall be a minimum of 2 ft (600 mm) beyond the edge of the paved shoulder. A minimum of two (2) posts shall be used.

The attachment of temporary signs to existing sign structures or sign panels shall be approved by the Engineer. Any damage to the existing signs due to the Contractor's operations shall be repaired or signs replaced, as determined by the Engineer, at the Contractor's expense.

Signs which are placed on overhead bridge structures shall be fastened to the handrail with stainless steel bands. These signs shall rest on the concrete parapet where possible. The Contractor shall furnish mounting details for approval by the Engineer.

<u>Method of Measurement</u>: This work shall be measured for payment in square feet (square meters) edge to edge (horizontally and vertically).

All hardware, posts or skids, supports, bases for ground mounted signs, connections, which are required for mounting these signs will be included as part of this pay item.

<u>Basis of Payment</u>: This work shall be paid for at the contract unit price per square foot (square meter) for TEMPORARY INFORMATION SIGNING.

AGGREGATE SURFACE COURSE FOR TEMPORARY ACCESS

Effective: April 1, 2001

Revised: January 2, 2007

Revise Article 402.10 of the Standard Specifications to read:

"402.10 For Temporary Access. The contractor shall construct and maintain aggregate surface course for temporary access to private entrances, commercial entrances and roads according to Article 402.07 and as directed by the Engineer.

The aggregate surface course shall be constructed to the dimensions and grades specified below, except as modified by the plans or as directed by the Engineer.

- (a) Private Entrance. The minimum width shall be 12 ft (3.6 m). The minimum compacted thickness shall be 6 in. (150 mm). The maximum grade shall be eight percent, except as required to match the existing grade.
- (b) Commercial Entrance. The minimum width shall be 24 ft (7.2 m). The minimum compacted thickness shall be 9 in. (230 mm). The maximum grade shall be six percent, except as required to match the existing grade.
- (c) Road. The minimum width shall be 24 ft (7.2 m). The minimum compacted thickness shall be 9 in. (230 mm). The grade and elevation shall be the same as the removed pavement, except as required to meet the grade of any new pavement constructed.

Maintaining the temporary access shall include relocating and/or regrading the aggregate surface coarse for any operation that may disturb or remove the temporary access. The same type and gradation of material used to construct the temporary access shall be used to maintain it.

When use of the temporary access is discontinued, the aggregate shall be removed and utilized in the permanent construction or disposed of according to Article 202.03."

Add the following to Article 402.12 of the Standard Specifications:

"Aggregate surface course for temporary access will be measured for payment as each for every private entrance, commercial entrance or road constructed for the purpose of temporary access. If a residential drive, commercial entrance, or road is to be constructed under multiple stages, the aggregate needed to construct the second or subsequent stages will not be measured for payment but shall be included in the cost per each of the type specified."

Revise the second paragraph of Article 402.13 of the Standard Specifications to read:

"Aggregate surface course for temporary access will be paid for at the contract unit price per each for TEMPORARY ACCESS (PRIVATE ENTRANCE), TEMPORARY ACCESS (COMMERCIAL ENTRANCE) or TEMPORARY ACCESS (ROAD).

Partial payment of the each amount bid for temporary access, of the type specified, will be paid according to the following schedule:

- (a) Upon construction of the temporary access, sixty percent of the contract unit price per each, of the type constructed, will be paid.
- (b) Subject to the approval of the Engineer for the adequate maintenance and removal of the temporary access, the remaining forty percent of the pay item will be paid upon the permanent removal of the temporary access."

MAINTENANCE OF ROADWAYS

Effective: September 30, 1985

Revised: November 1, 1996

Beginning on the date that work begins on this project, the Contractor shall assume responsibility for normal maintenance of all existing roadways within the limits of the improvement. This normal maintenance shall include all repair work deemed necessary by the Engineer, but shall not include snow removal operations. Traffic control and protection for maintenance of roadways will be provided by the Contractor as required by the Engineer.

If items of work have not been provided in the contract, or otherwise specified for payment, such items, including the accompanying traffic control and protection required by the Engineer, will be paid for in accordance with Article 109.04 of the Standard Specifications.

TRAFFIC CONTROL PLAN

Effective: September 30, 1985

Revised: January 1, 2007

Traffic Control shall be according to the applicable sections of the Standard Specifications, the Supplemental Specifications, the "Illinois Manual on Uniform Traffic Control Devices for Streets and Highways", any special details and Highway Standards contained in the plans, and the Special Provisions contained herein.

Special attention is called to Article 107.09 of the Standard Specifications and the following Highway Standards, Details, Quality Standard for Work Zone Traffic Control Devices, Recurring Special Provisions and Special Provisions contained herein, relating to traffic control.

The Contractor shall contact the District One Bureau of Traffic at least 72 hours in advance of beginning work.

<u>STANDARDS</u>: 701001-02, 701006-04, 701011-03, 701201-04, 701301-04, 701501-06, 701901-02

- <u>DETAILS</u>: Traffic Control and Protection for Side Roads, Intersections, and Driveways Pavement Marking Letters and Symbols for Traffic Staging Arterial Road Information Sign
- SPECIAL PROVISIONS: Traffic Control Plan Maintenance of Roadways Maintenance of Traffic Flaggers in Work Zones

MAINTENANCE OF TRAFFIC

Beginning on the date that work begins on this project, the Contractor shall assume responsibility for normal maintenance of all existing roadways within the limits of the improvement. This normal maintenance shall include all repair work deemed necessary by the Engineer, but shall not include snow removal operations. Traffic control and protection for maintenance of roadways will be provided by the Contractor as required by the Engineer.

The contractor shall commence work on all maintenance of roadways items within 6 hours of notification by the Engineer and complete such items in an expediant and timely manner.

If items of work have not been provided in the contract, or otherwise specified for payment, such items, including the accompanying traffic control and protection required by the Engineer, will be paid for in accordance with Article 109.04 of the Standard Specifications.

FINE AGGREGATE FOR HOT- MIX ASPHALT (HMA) (D-1)

Effective: May 1, 2007

Revised: January 1, 2012

Revise Article 1003.03 (c) of the Standard Specifications to read:

" (c) Gradation. The fine aggregate gradation for all HMA shall be FA1, FA 2, FA 20, FA 21 or FA 22. When Reclaimed Asphalt Pavement (RAP) is incorporated in the HMA design, the use of FA 21 Gradation will not be permitted.

STATUS OF UTILITIES TO BE ADJUSTED

Effective: January 30, 1987

Revised: January 24, 2013

Utilities companies involved in this project have provided the following estimated durations:

Name of Utility	Туре	Location	Estimated Duration of Time for the Completion of Relocation or Adjustments
ATT	Handhole and underground utilities	Corridor, see plans	Will be relocated during construction
Comcast	Overhead cable on ComEd pole	Corridor, see plans	Poles will be relocated during construction
Nicor	Underground gas main along Nelson Lake Road	Corridor, see plans	Gas main will be relocated during construction
ComEd	Power Poles on east side of Nelson Lake Road	Corridor, see plans	Poles will be relocated during construction
		Corridor, see plans	
		Corridor, see plans	

The above represents the best information available to the Department and is included for the convenience of the bidder. The applicable portions of Articles 105.07 and 107.31 of the Standard Specifications shall apply.

In accordance with 605 ILCS 5/9-113 of the Illinois Compiled Statutes, utility companies have 90 days to complete the relocation of their facilities after receipt of written notice from the Department. The 90-day written notice will be sent to the utility companies after the following occurs:

- 1) Proposed right of way is clear for contract award.
- 2) Final plans have been sent to and received by the utility company.
- 3) Utility permit is received by the Department and the Department is ready to issue said permit.
- 4) If a permit has not been submitted, a 15 day letter is sent to the utility company notifying them they have 15 days to provide their permit application. After allowing 15 days for submission of the permit the 90 day notice is sent to the utility company.
- 5) Any time within the 90 day relocation period the utility company may request a waiver for additional time to complete their relocation. The Department has 10 days to review and respond to a waiver request.

RECLAIMED ASPHALT PAVEMENT AND RECLAIMED ASPHALT SHINGLES (D-1)

Effective: November 1, 2012

Revise: January 2, 2013

Revise Section 1031 of the Standard Specifications to read:

"SECTION 1031. RECLAIMED ASPHALT PAVEMENT AND RECLAIMED ASPHALT SHINGLES

1031.01 Description. Reclaimed asphalt pavement and reclaimed asphalt shingles shall be according to the following.

- (a) Reclaimed Asphalt Pavement (RAP). RAP is the material resulting by cold milling or crushing an existing hot-mix asphalt (HMA) pavement. RAP will be considered processed FRAP after completion of both crushing and screening to size. The Contractor shall supply written documentation that the RAP originated from routes or airfields under federal, state, or local agency jurisdiction.
- (b) Reclaimed Asphalt Shingles (RAS). Reclaimed asphalt shingles (RAS). RAS is from the processing and grinding of preconsumer or post-consumer shingles. RAS shall be a clean and uniform material with a maximum of 0.5 percent unacceptable material, as defined in Bureau of Materials and Physical Research Policy Memorandum "Reclaimed Asphalt Shingle (RAS) Sources", by weight of RAS. All RAS used shall come from a Bureau of Materials and Physical Research approved processing facility where it shall be ground and processed to 100 percent passing the 3/8 in. (9.5 mm) sieve and 90 percent passing the #4 (4.75 mm) sieve . RAS shall

meet the testing requirements specified herein. In addition, RAS shall meet the following Type 1 or Type 2 requirements.

- (1) Type 1. Type 1 RAS shall be processed, preconsumer asphalt shingles salvaged from the manufacture of residential asphalt roofing shingles.
- (2) Type 2. Type 2 RAS shall be processed post-consumer shingles only, salvaged from residential, or four unit or less dwellings not subject to the National Emission Standards for Hazardous Air Pollutants (NESHAP).

1031.02 Stockpiles. RAP and RAS stockpiles shall be according to the following.

- (a) RAP Stockpiles. The Contractor shall construct individual, sealed RAP stockpiles meeting one of the following definitions. No additional RAP shall be added to the pile after the pile has been sealed. Stockpiles shall be sufficiently separated to prevent intermingling at the base. All stockpiles (including unprocessed RAP and Processed FRAP) shall be identified by signs indicating the type as listed below (i.e. "Non- Quality, FRAP -#4 or Type 2 RAS", etc...).
 - (1) Fractionated RAP (FRAP). FRAP shall consist of RAP from Class I, Superpave HMA (High and Low ESAL) or equivalent mixtures. The coarse aggregate in FRAP shall be crushed aggregate and may represent more than one aggregate type and/or quality but shall be at least C quality. All FRAP shall be processed prior to testing sized into fractions with the separation occurring on or between the #4 (4.75 mm) and 1/2 in. (12.5 mm) sieves. Agglomerations shall be minimized such that 100 percent of the RAP in the coarse fraction shall pass the maximum sieve size specified for the mix the RAP will be used in.
 - (2) Restricted FRAP (B quality) stockpiles shall consist of RAP from Class I, Superpave (High ESAL), or HMA (High ESAL). If approved by the Engineer, the aggregate from a maximum 3.0 inch single combined pass of surface/binder milling will be classified as B quality. All millings from this application will be processed into FRAP as described previously.
 - (3) Conglomerate. Conglomerate RAP stockpiles shall consist of RAP from Class I, Superpave HMA (High and Low ESAL) or equivalent mixtures. The coarse aggregate in this RAP shall be crushed aggregate and may represent more than one aggregate type and/or quality but shall be at least C quality. This RAP may have an inconsistent gradation and/or asphalt binder content prior to processing. All conglomerate RAP shall be processed (FRAP) prior to testing. Conglomerate RAP stockpiles shall not contain steel slag or other expansive material as determined by the Department.

- (4) Conglomerate "D" Quality (DQ). Conglomerate DQ RAP stockpiles shall consist of RAP from HMA shoulders, bituminous stabilized subbases or Superpave (Low ESAL)/HMA (Low ESAL) IL-19.0L binder mixture. The coarse aggregate in this RAP may be crushed or round but shall be at least D quality. This RAP may have an inconsistent gradation and/or asphalt binder content. Conglomerate DQ RAP stockpiles shall not contain steel slag or other expansive material as determined by the Department.
- (5) Non-Quality. RAP stockpiles that do not meet the requirements of the stockpile categories listed above shall be classified as "Non-Quality".

RAP/FRAP containing contaminants, such as earth, brick, sand, concrete, sheet asphalt, bituminous surface treatment (i.e. chip seal), pavement fabric, joint sealants, plant cleanout etc., will be unacceptable unless the contaminants are removed to the satisfaction of the Engineer. Sheet asphalt shall be stockpiled separately.

(b) RAS Stockpiles. The Contractor shall construct individual, sealed RAS stockpiles meeting one of the following definitions. No additional RAS shall be added to the pile after the pile has been sealed. Type 1 and Type 2 RAS shall be stockpiled separately and shall be sufficiently separated to prevent intermingling at the base. Each stockpile shall be signed indicating what type of RAS is present.

However, a RAS source may submit a written request to the Department for approval to blend mechanically a specified ratio of type 1 RAS with type 2 RAS. The source will not be permitted to change the ratio of the blend without the Department prior written approval. The Engineer's written approval will be required, to mechanically blend RAS with any fine aggregate produced under the AGCS, up to an equal weight of RAS, to improve workability. The fine aggregate shall be "B Quality" or better from an approved Aggregate Gradation Control System source. The fine aggregate shall be one that is approved for use in the HMA mixture and accounted for in the mix design and during HMA production.

Records identifying the shingle processing facility supplying the RAS, RAS type and lot number shall be maintained by project contract number and kept for a minimum of three years.

1031.03 Testing. RAP/FRAP and RAS testing shall be according to the following.

- (a) RAP/FRAP Testing. When used in HMA, the RAP/FRAP shall be sampled and tested either during processing or after stockpiling.
 - During Stockpiling. For testing during stockpiling, washed extraction samples shall be run at the minimum frequency of one sample per 500 tons (450 metric tons) for the first 2000 tons (1800 metric tons) and one sample per 2000 tons (1800 metric tons)

thereafter. A minimum of five tests shall be required for stockpiles less than 4000 tons (3600 metric tons).

(2) After Stockpiling. For testing after stockpiling, the Contractor shall submit a plan for approval to the District proposing a satisfactory method of sampling and testing the RAP/FRAP pile either in-situ or by restockpiling. The sampling plan shall meet the minimum frequency required above and detail the procedure used to obtain representative samples throughout the pile for testing.

Before extraction, each field sample whether RAP or FRAP, shall be split to obtain two samples of test sample size. One of the two test samples from the final split shall be labeled and stored for Department use. The Contractor shall extract the other test sample according to Department procedure. The Engineer reserves the right to test any sample (split or Department-taken) to verify Contractor test results.

(b) RAS Testing. RAS shall be sampled and tested either during or after stockpiling.

During stockpiling, washed extraction, and testing for unacceptable materials shall be run at the minimum frequency of one sample per 200 tons (180 metric tons) for the first 1000 tons (900 metric tons) and one sample per 1000 tons (900 metric tons) thereafter. A minimum of five samples are required for stockpiles less than 1000 tons (900 metric tons). Once a ≤ 1000 ton (900 metric ton), five-sample/test stockpile has been established it shall be sealed. Additional incoming RAS shall be stockpiled in a separate working pile as designated in the Quality Control plan and only added to the sealed stockpile when the test results of the working pile are complete and are found to meet the tolerances specified herein for the original sealed RAS stockpile.

Before extraction, each field sample shall be split to obtain two samples of test sample size. One of the two test samples from the final split shall be labeled and stored for Department use. The Contractor shall extract the other test sample according to Department procedures. The Engineer reserves the right to test any sample (split or Department-taken) to verify Contractor test results.

1031.04 Evaluation of Tests. Evaluation of tests results shall be according to the following.

(a) Evaluation of RAP/FRAP Test Results. All of the extraction results shall be compiled and averaged for asphalt binder content and gradation and, when applicable (for slag) G_{mm}. Individual extraction test results, when compared to the averages, will be accepted if within the tolerances listed below.

Parameter	RAP or FRAP	Conglomerate "D"
		Quality RAP
1 in. (25 mm)		± 5 %
1/2 in. (12.5 mm)	± 8 %	± 15 %
No. 4 (4.75 mm)	± 6 %	± 13 %
No. 8 (2.36 mm)	± 5 %	
No. 16 (1.18 mm)		± 15 %
No. 30 (600 μm)	± 5 %	
No. 200 (75 μm)	± 2.0 %	± 4.0 %
Asphalt Binder	\pm 0.4 % $^{1/}$	± 0.5 %
G _{mm}	\pm 0.03 $^{2/}$	

1/ The tolerance for FRAP shall be $\pm\,0.3$ %.

2/ For slag and steel slag

If more than 20 percent of the individual sieves and/or asphalt binder content tests are out of the above tolerances, the RAP/FRAP shall not be used in HMA unless the RAP/FRAP representing the failing tests is removed from the stockpile. All test data and acceptance ranges shall be sent to the District for evaluation.

With the approval of the Engineer, the ignition oven may be substituted for extractions according to the Illinois Test Procedure, "Calibration of the Ignition Oven for the Purpose of Characterizing Reclaimed Asphalt Pavement (RAP)".

(b) Evaluation of RAS Test Results. All of the test results, with the exception of percent unacceptable materials, shall be compiled and averaged for asphalt binder content and gradation. Individual test results, when compared to the averages, will be accepted if within the tolerances listed below.

Parameter	RAS
No. 8 (2.36 mm)	± 5 %
No. 16 (1.18 mm)	± 5 %
No. 30 (600 μm)	±4%
No. 200 (75 μm)	± 2.0 %
Asphalt Binder Content	± 1.5 %

If more than 20 percent of the individual sieves and/or asphalt binder content tests are out of the above tolerances, the RAS shall not be used in Department projects unless the RAS, RAP or

FRAP representing the failing tests is removed from the stockpile. All test data and acceptance ranges shall be sent to the District for evaluation.

1031.05 Quality Designation of Aggregate in RAP/FRAP.

- (a) RAP. The aggregate quality of the RAP for homogenous, conglomerate, and conglomerate "D" quality stockpiles shall be set by the lowest quality of coarse aggregate in the RAP stockpile and are designated as follows.
 - (1) RAP from Class I, Superpave (High ESAL)/HMA (High ESAL), or (Low ESAL) IL-9.5L surface mixtures are designated as containing Class B quality coarse aggregate.
 - (2) RAP from Superpave (High ESAL)/HMA (Low ESAL) IL-19.0L binder mixture is designated as Class D quality coarse aggregate.
 - (3) RAP from Class I, Superpave (High ESAL)/HMA (High ESAL) binder mixtures, bituminous base course mixtures, and bituminous base course widening mixtures are designated as containing Class C quality coarse aggregate.
 - (4) RAP from bituminous stabilized subbase and BAM shoulders are designated as containing Class D quality coarse aggregate.
- (b) FRAP. If the Engineer has documentation of the quality of the FRAP aggregate, the Contractor shall use the assigned quality provided by the Engineer.

If the quality is not known, the quality shall be determined as follows. Fractionated RAP stockpiles containing plus #4 (4.75 mm) sieve coarse aggregate shall have a maximum tonnage of 5,000 tons (4,500 metric tons). The Contractor shall obtain a representative sample witnessed by the Engineer. The sample shall be a minimum of 50 lb (25 kg). The sample shall be extracted according to Illinois Modified AASHTO T 164 by a consultant prequalified by the Department for the specified testing. The consultant shall submit the test results along with the recovered aggregate to the District Office. The cost for this testing shall be paid by the Contractor. The District will forward the sample to the BMPR Aggregate Lab for MicroDeval Testing, according to Illinois Modified AASHTO T 327. A maximum loss of 15.0 percent will be applied for all HMA applications. The fine aggregate portion of the fractionated RAP shall not be used in any HMA mixtures that require a minimum of "B" quality aggregate or better, until the coarse aggregate fraction has been determined to be acceptable thru a MicroDeval Testing.

1031.06 Use of RAS, RAP or FRAP in HMA. The use of RAS, RAP or FRAP shall be a Contractor's option when constructing HMA in all contracts.

- (a) RAP/FRAP. The use of RAP/FRAP in HMA shall be as follows.
 - (1) Coarse Aggregate Size (after extraction). The coarse aggregate in all RAP shall be equal to or less than the nominal maximum size requirement for the HMA mixture to be produced.
 - (2) Steel Slag Stockpiles. RAP/FRAP stockpiles containing steel slag or other expansive material, as determined by the Department, shall be homogeneous and will be approved for use in HMA (High ESAL and Low ESAL) mixtures regardless of lift or mix type.
 - (3) Use in HMA Surface Mixtures (High and Low ESAL). RAP/FRAP stockpiles for use in HMA surface mixtures (High and Low ESAL) shall have coarse aggregate that is Class B quality or better. RAP/FRAP shall be considered equivalent to limestone for frictional considerations unless produced/screened to minus 3/8 inch.
 - (4) Use in HMA Binder Mixtures (High and Low ESAL), HMA Base Course, and HMA Base Course Widening. RAP/FRAP stockpiles for use in HMA binder mixtures (High and Low ESAL), HMA base course, and HMA base course widening shall be FRAP in which the coarse aggregate is Class C quality or better.
 - (5) Use in Shoulders and Subbase. RAP/FRAP stockpiles for use in HMA shoulders and stabilized subbase (HMA) shall be RAP, Restricted FRAP, conglomerate, or conglomerate DQ.
- (b) RAS. RAS meeting Type 1 or Type 2 requirements will be permitted in all HMA applications as specified herein.
- (c) RAP/FRAP and/or RAS Usage Limits. Type 1 or Type 2 RAS may be used alone or in conjunction with RAP or FRAP in HMA mixtures up to a maximum of 5.0% by weight of the total mix.

When the Contractor chooses the RAP option, the percentage of the percentage of virgin asphalt binder replaced by the asphalt binder from the RAP shall not exceed the percentages indicated in the table below for a given N Design:

HMA Mixtures ^{1/, 2/}	Maximum % Aspha	alt Binder replaceme	ent (ABR)
Ndesign	Binder/Leveling Binder	Surface	Polymer Modified
30L	25	15	10
50	25	15	10
70	15	10	10
90	10	10	10
105	10	10	10
4.75 mm N-50			15
SMA N-80			10

Max Asphalt Binder Replacement RAP Only Table 1

- 1/ For HMA "All Other" (shoulder and stabilized subbase) N-30, the percent asphalt binder replacement shall not exceed 50% of the total asphalt binder in the mixture.
- 2/ When the asphalt binder replacement exceeds 15 percent, the high and low virgin asphalt binder grades shall each be reduced by one grade (i.e. 25 percent binder replacement would require a virgin asphalt binder grade of PG64-22 to be reduced to a PG58-28). When constructing full depth HMA and the ABR is less than 15 percent, the required virgin asphalt binder grade shall be PG64-28.

When the Contractor chooses either the RAS or FRAP option, the percent binder replacement shall not exceed the amounts indicated in the tables below for a given N Design.

HMA Mixtures ^{1/, 2/}		Maximum % ABR	
			o/ 1/
Ndesign	Binder/Leveling	Surface	Polymer ^{3/, 4/}
	Binder		Modified
30L	35	30	15
50	30	25	15
70	30	20	15
90	20	15	15
105	20	15	15
4.75 mm N-50			25
SMA N-80			15

Max Asphalt Binder Replacement RAS or FRAP Table 2

1/ For HMA "All Other" (shoulder and stabilized subbase) N-30, the percent asphalt bider replacement shall not exceed 50% of the total asphalt binder in the mixture.

2/ When the asphalt binder replacement exceeds 15 percent for all mixes, except for SMA and IL-4.75, the high and low virgin asphalt binder grades shall each be reduced by one grade (i.e. 25 percent binder replacement will require a virgin asphalt binder grade of PG64-22 to be reduced to a PG58-28). When constructing full depth HMA and the ABR is less than 15 percent, the required virgin asphalt binder grade shall be PG64-28.

3/ When the ABR for SMA is 15 percent or less, the required virgin asphalt binder grade shall be SBS PG76-22.

4/ When the ABR for IL-4.75 mix is 15 percent or less, the required virgin asphalt binder grade shall be SBS PG76-22. When the ABR for the IL-4.75 mix exceeds 15 percent, the virgin asphalt binder grade shall be SBS PG70-28.

When the Contractor chooses the RAS with FRAP combination, the percent asphalt binder replacement shall split equally between the RAS and the FRAP, and the total replacement shall not exceed the amounts indicated in the tables below for a given N Design.

Table 5			
HMA Mixtures ^{1/, 2/}	Maximum % ABR		
Ndesign	Binder/Leveling	Surface	Polymer
	Binder		Modified ^{3/, 4/}
30L	50	40	30
50	40	35	30
70	40	30	30
90	40	30	30
105	40	30	30
4.75 mm N-50			40
SMA N-80			30

Max Asphalt Binder Replacement RAS and FRAP Combination

1/ For HMA "All Other" (shoulder and stabilized subbase) N-30, the percent asphalt binder replacement shall not exceed 50% of the total asphalt binder in the mixture.

Table 3

2/ When the binder replacement exceeds 15 percent for all mixes, except for SMA and IL-4.75, the high and low virgin asphalt binder grades shall each be reduced by one grade (i.e. 25 percent binder replacement will require a virgin asphalt binder grade of PG64-22 to be reduced to a PG58-28).

3/ When the ABR for SMA is 15 percent or less, the required virgin asphalt binder shall be SBS PG76-22. When the ABR for SMA exceeds 15%, the virgin asphalt binder grade shall be SBS PG70-28.

4/ When the ABR for IL-4.75 mix is 15 percent or less, the required virgin asphalt binder grade shall be SBS PG76-22. When the ABR for the IL-4.75 mix exceeds 15 percent, the virgin asphalt binder grade shall be SBS PG70-28.

1031.07 HMA Mix Designs. At the Contractor's option, HMA mixtures may be constructed utilizing RAP/FRAP and/or RAS material meeting the above detailed requirements.

All HMA mixtures will be required to be tested, prior to submittal for Department verification, according to Illinois Modified AASHTO T324 (Hamburg Wheel) and shall meet the following requirements:

Asphalt Binder Grade	# Repetitions	Max Rut Depth (mm)
PG76-XX	20,000	12.5
PG70-XX	20,000	12.5
PG64-XX	10,000	12.5
PG58-XX	10,000	12.5
PG52-XX	10,000	12.5
PG46-XX	10,000	12.5

Note: For SMA Designs (N-80) the maximum rut depth is 6.0 mm at 20,000 repetitions.

For IL 4.75 mm Designs (N-50) the maximum rut depth is 9.0 mm at 15,000 repetitions.

1031.08 HMA Production. All HMA mixtures shall be sampled within the first 500 tons (450 metric tons) on the first day of production or during start up with a split reserved for the Department. The mix sample shall be tested according to the Illinois Modified AASHTO T 324 and shall meet the requirements specified herein. Mix production shall not exceed 1500 tons (1350 metric tons) or one day's production, whichever comes first, until the testing is completed and the mixture is found to be in conformance. The requirement to cease mix production may be waived if the plant produced mixture demonstrates conformance prior to start of mix production for a contract.

To remove or reduce agglomerated material, a scalping screen, gator, crushing unit, or comparable sizing device approved by the Engineer shall be used in the RAS, RAP and FRAP feed system to remove or reduce oversized material. If material passing the sizing device adversely affects the mix production or quality of the mix, the sizing device shall be set at a size specified by the Engineer.

If the RAS, RAP and FRAP control tolerances or QC/QA test results require corrective action, the Contractor shall cease production of the mixture containing RAS, RAP or FRAP and either switch to the virgin aggregate design or submit a new RAS, RAP or FRAP design.

- (a) RAP/FRAP. The coarse aggregate in all RAP/FRAP used shall be equal to or less than the maximum size requirement for the HMA mixture being produced.
- (b) RAS. RAS shall be incorporated into the HMA mixture either by a separate weight depletion system or by using the RAP weigh belt. Either feed system shall be interlocked with the aggregate feed or weigh system to maintain correct proportions for all rates of production and batch sizes. The portion of RAS shall be controlled accurately to within ± 0.5 percent of the amount of RAS utilized. When using the weight depletion system, flow indicators or sensing devices shall be provided and interlocked with the plant controls such that the mixture production is halted when RAS flow is interrupted.
- (c) RAS, RAP and FRAP. HMA plants utilizing RAS, RAP and FRAP shall be capable of automatically recording and printing the following information.
 - (1) Dryer Drum Plants.
 - a. Date, month, year, and time to the nearest minute for each print.
 - b. HMA mix number assigned by the Department.
 - c. Accumulated weight of dry aggregate (combined or individual) in tons (metric tons) to the nearest 0.1 ton (0.1 metric ton).
 - d. Accumulated dry weight of RAS, RAP and FRAP in tons (metric tons) to the nearest 0.1 ton (0.1 metric ton).
 - e. Accumulated mineral filler in revolutions, tons (metric tons), etc. to the nearest 0.1 unit.
 - f. Accumulated asphalt binder in gallons (liters), tons (metric tons), etc. to the nearest 0.1 unit.

- g. Residual asphalt binder in the RAS, RAP and FRAP material as a percent of the total mix to the nearest 0.1 percent.
- h. Aggregate RAS, RAP and FRAP moisture compensators in percent as set on the control panel. (Required when accumulated or individual aggregate and RAS, RAP and FRAP are printed in wet condition.)
- i. When producing mixtures with FRAP and/or RAS, a positive dust control system shall be utilized.
- j. Accumulated mixture tonnage.
- k. Dust Removed (accumulated to the nearest 0.1 ton)
- (2) Batch Plants.
 - a. Date, month, year, and time to the nearest minute for each print.
 - b. HMA mix number assigned by the Department.
 - c. Individual virgin aggregate hot bin batch weights to the nearest pound (kilogram).
 - d. Mineral filler weight to the nearest pound (kilogram).
 - f. RAS, RAP and FRAP weight to the nearest pound (kilogram).
 - g. Virgin asphalt binder weight to the nearest pound (kilogram).
 - h. Residual asphalt binder in the RAS, RAP and FRAP material as a percent of the total mix to the nearest 0.1 percent.

The printouts shall be maintained in a file at the plant for a minimum of one year or as directed by the Engineer and shall be made available upon request. The printing system will be inspected by the Engineer prior to production and verified at the beginning of each construction season thereafter.

1031.09 RAP in Aggregate Surface Course and Aggregate Shoulders. The use of

RAP or FRAP in aggregate surface course and aggregate shoulders shall be as follows.

(a) Stockpiles and Testing. RAP stockpiles may be any of those listed in Article 1031.02, except "Non-Quality" and "FRAP". The testing requirements of Article 1031.03 shall not apply.

(b) Gradation. One hundred percent of the RAP material shall pass the 1 1/2 in. (37.5mm) sieve. The RAP material shall be reasonably well graded from coarse to fine. RAP material that is gapgraded, FRAP, or single sized will not be accepted for use as Aggregate Surface Course and Aggregate Shoulders."

INCORPORATIONS

The Illinois Department of Transportation's (hereinafter "IDOT") <u>Standard Specifications for Road and</u> <u>Bridge Construction</u>, adopted January 1, 2012 (hereinafter "Standard Specifications") along with the following: (i) the <u>Special Provisions</u>, as provided herein below, (ii) the latest edition of the <u>Illinois Manual</u> <u>on Traffic Control Devices for Streets and Highways</u> in effect as of the date of this invitation for bids,(hereinafter the "MUTCD"), (iii) the Illinois Department of Transportation's <u>Supplement</u> <u>Specifications and Recurring Special Provisions</u>, adopted January 1, 2014 (as indicated on the check sheet included herein), (iv) the latest edition of IDOT's Highway Standards (hereinafter "Highway Standards") are specifically incorporated herein and made a part hereof for the proposed improvement designated as Section 08-00378-00-CH.

DIRECT DEPOSIT

The CONTRACTOR shall use the COUNTY'S Automatic Clearing House (ACH) payment program. The following internet link shall be used to complete the vendor (CONTRACTOR) agreement. http://www.countyofkane.org/Documents/Finance%20Department/Vendor%20Information/achBrochu re.pdf

INSURANCE

The Contractor shall obtain and keep in full force the following insurance coverages:

<u>POLICY:</u> Owner's Protective Liability

HOLDER: The County of Kane

LIMITS: Not less than \$2,000,000 per occurrence and \$5,000,000 aggregate limit.

All other provisions of Article 107.27 of the Standard Specifications shall apply.

PREQUALIFICATIONS OF BIDDERS

PREQUALIFICATION OF BIDDERS in accordance with Section 102.01 of the Standard Specifications will be required of all bidders on this proposal.

The Contractor will be required to meet Prequalification Code 003, BITUMINOUS PLANT OWNER.

PREVAILING WAGES

By submitting a bid, bidder expressly agrees to comply with all applicable State and Federal Prevailing Rate of Wage Laws, and all steps necessary to be in compliance therewith.

PREVAILING WAGE RATES

It is the policy of the State of Illinois as declared in "AN ACT regulating wages of laborers, mechanics and other workman employed in any public works by the State, County, City or any political subdivision or by any work under construction for public works" approved June 26, 1941, that a wage of no less that the general prevailing hourly rate as paid for work of a similar character in a locality in which work is performed, shall be paid to all laborers, workmen and mechanics employed by and on behalf of any and all public body engaged in public works, exclusive of maintenance work.

The responsive Bidder must include with their bid a separate sheet showing trades to be employed and wage rates to be paid. Attached is a copy of the current Illinois Department of Labor Prevailing Wage Rates in the County of Kane effective May 1, 2010. Prevailing wage rates are subject to revision monthly and the responsive bidder is responsible for any future adjustment thereof. Copies of the current prevailing wage rates are always available from the Illinois Department of Labor at their website, the address of which is: http://www.state.il.us/agency/idol/rates/rates.HTM

The undersigned hereby agrees to pay the current Illinois Department of Labor Prevailing Wage Rates for any and all projects worked on for the County of Kane. The undersigned also agrees to provide the Kane County Division of Transportation a sheet showing trades to be employed and wage rates to be paid for each construction or repair project bid on or contracted for.

Company Name

Signature of Officer of Company

Title

Date

PROGRESS SCHEDULE

Add the following paragraph to Article 108.02 of the standard specifications:

"The Contractor shall maintain throughout the course of the project, and provide to the Engineer at the Engineer's request, a detailed progress schedule of planned construction related tasks and locations that projects a minimum of 6 weeks in to the future."

RECESSED REFLECTIVE PAVEMENT MARKERS

Description:

This work shall consist of setting reflective pavement markers in a recessed groove in the pavement. The recessed pavement markers shall be used to supplement other pavement markings, similar to the use of Raised Reflective Pavement Markers.

Materials:

The reflective pavement marker shall be a 3M 190 series pavement marker or Engineer approved equivalent. The reflector holder shall be a MarkerOne Series R100 reflector holder or Engineer approved equivalent. The epoxy used shall be as recommended by the pavement marker manufacturer.

Installation:

Spacing and orientation of the pavement markers shall be as detailed in the plans or as directed by the Engineer.

A recessed groove shall be cut in the pavement 5.25" wide, 0.9" deep on a 15.5" diameter. An additional 4.5' long grove shall taper from 0" (normal pavement) to 0.9" depth (full-recessed). For 1-way markers heading uphill, uphill grind taper may be omitted.

The recessed area shall be cleaned free of all loose material, and dry before the placement of the pavement marker. All excess material resulting from the construction of the recessed area shall be completely removed from the surface of the roadway by means of vacuum sweeper truck. The pavement marker shall be cemented with epoxy in the center of the 0.9" deep recessed groove.

Inspection:

A straight edge shall be placed across the recess to check that the top of the marker is below the pavement. Inspection and acceptance shall be according to Article 781.04 of the Standard Specifications.

Basis of Payment:

This work will be paid for at the contract unit price each for RECESSED REFLECTIVE PAVEMENT MARKER, which price shall be payment in full for all labor, equipment, and materials necessary to complete the work as specified.

HOT MIX ASPHALT SURFACE REMOVAL – BUTT JOINT AND TEMPORARY RAMP

This work shall be done in accordance with A**rticle 406.08** of the Standard Specifications at locations shown on the plans and as directed by the Engineer.

Butt joints shall be constructed in a time not to exceed 72 hours prior to the placement of the hot mix asphalt surface course. A temporary hot mix asphalt ramp shall be constructed immediately after the construction of the butt joint or before the lane is opened to traffic. This work will be required at the terminus of all routes to be resurfaced and at each side road leg that intersects the route.

Before a construction butt joint and temporary ramp are opened to traffic, the Contractor shall install one sign in each direction. The signs shall be placed approximately 100 feet in advance of butt joints at locations where traffic does not come to a complete stop and approximately 10 feet or less in advance of butt joints at locations where traffic not come to a complete stop (such as side streets or major commercial entrances) or as directed by the engineer. The signs shall not be removed until after the hot mix asphalt surface course has been placed on the roadway up through the butt joint.

These signs shall have minimum dimensions of 48 inches by 48 inches and have a black legend and border on an orange reflectorized background. The legend shall read:

"BUMP"

Basis of Payment:

This work shall be paid for at the contract unit price per square yard for HOT MIX ASPHALT SURFACE REMOVAL - BUTT JOINT, and the TEMPORARY RAMP shall be paid for at the contract unit price per square yard, which price shall include all labor, materials, and equipment necessary to complete the work described above and indicated on the drawings.

HOT-MIX ASPHALT DRIVEWAY PAVEMENT

This work shall consist of placing a hot-mix asphalt driveway pavement structure according to the requirements of Hot-Mix Asphalt Mixtures constructed on a prepared subbase, according to the requirements of Section 311 and 406 of the standard specifications, and IDOT District 1 Details BD01 and BD02, insofar as they apply. Residential driveway pavements shall be 8" thick and shall consist of 2" of Hot-Mix Asphalt Surface Course, Mix "C," on top of Hot-Mix Asphalt Base Course, 6". Commercial driveway pavements shall be 10" thick and shall consist of 2 " of Hot-Mix Asphalt Surface Course, Mix "C," on top of Hot-Mix Asphalt Surface Course, Mix "C," on top of Hot-Mix Asphalt Surface Course, Mix "C," on top of Hot-Mix Asphalt Surface Course, Mix "C," on top of Hot-Mix Asphalt Surface Course, Mix

If the existing base is composed of suitable aggregate material, it shall be stabilized or repaired using an appropriate compactive effort as approved by the Engineer. If unsuitable material is encountered in the existing base course it shall be removed and replaced with sub-base granular material.

Hot-mix asphalt driveway pavement will be measured for payment in place and the area computed in square yards. The work will be paid for at the contract unit price per square yard for HOT-MIX ASPHALT DRIVEWAY PAVEMENT, of the thickness specified.

The granular subbase will not be paid for separately but shall be considered included in the unit price bid for HOT-MIX ASPHALT DRIVEWAY PAVEMENT.

Removal of unsuitable or unstable subgrade material shall be paid for at the contract unit price per cubic yard for REMOVAL AND DISPOSAL OF UNSUITABLE MATERIAL. Replacement with new sub-base material shall be paid for at the contract unit price per square yard for SUBBASE GRANULAR MATERIAL, TYPE B, 6 INCH.

INCIDENTAL HOT-MIX-ASPHALT SURFACING

This work shall consist of placing a temporary HMA pavement to allow vehicles on the side streets to travel across Main Street after grinding the existing surface. The temporary pavement shall be constructed according to the requirements Section 408 of the Standard Specifications.

The Contractor shall construct the temporary pavement immediately after the grinding of the existing HMA surface, or as determined by the Engineer.

When use of the temporary bituminous pavement is discontinued, the bituminous concrete mixtures shall be removed and disposed of according to Article 203.03.

<u>Basis of Payment</u>: The work will be paid for at the contract unit price per ton tor INCIDENTAL HOT-MIX ASPHALT SURFACING. The cost of removing and disposing of the temporary pavement shall not be paid for separately but shall be considered included in the unit price bid for INCIDENTAL HOT-MIX ASPHALT SURFACING.

PIPE CULVERT REMOVAL

This work shall consist of removal and disposal of existing RCP or CMP storm sewer in accordance with Section 501 of the standard specifications. This work shall include all necessary labor, equipment and materials to complete the work, including the sawcut and removal of pavement. Trench backfill shall be used in all areas of the roadway up to two feet behind back of curb, and paid for as the item TRENCH BACKFILL.

<u>Basis of Payment</u>: This work will be paid for at the contract unit price per linear foot for PIPE CULVERT REMOVAL.

DUST CONTROL WATERING

This work shall consist of controlling dust resulting from construction operations. Dust shall be controlled by sweeping, watering, or application of Calcium Chloride in a manner meeting the Engineer's approval. All equipment used for this work shall be approved by the Engineer. This work shall be measured in units with each unit being equivalent to 30 minutes of sweeping and one full application of water or Calcium Chloride. Dust control watering shall be required at the end of each work week and at other times as directed by the Engineer.

The Contractor is expected to respond to the Engineer's request immediately. If the Contractor is unable to schedule dust control within four (4) hours or if conditions are determined by the Engineer to require immediate attention, they shall cease all construction operations and manually sweep and hose down the areas of concern. Only when given approval by the Engineer shall the Contractor resume construction operations.

<u>Basis of Payment</u>: This work shall be paid for at the contract unit price per unit for DUST CONTROL WATERING, which price shall be payment in full for furnishing all labor, equipment, and water for adequate control for dust as herein specified.

SUPPLEMENTAL WATERING

<u>Scope</u>: This work will include watering turf, trees, shrubs, and perennial plants at the rates specified and as directed by the ENGINEER.

<u>Schedule</u>: Watering will only begin after the successful completion of all period of establishment requirements. Watering must be completed in a timely manner. When the ENGINEER directs the CONTRACTOR to do supplemental watering, the CONTRACTOR must begin the watering operation within 24 hours and must apply a minimum of 10· units of water per day until the directed is complete. Damage to plant material that is a result of the CONTRACTOR's failure to water in a timely way must be repaired or replaced at the CONTRACTOR's expense.

Source of Water: The CONTRACTOR shall notify the ENGINEER of the source of water used and. provide written certification that the water does not contain chemicals harmful to plant growth.

<u>Rate of Application</u>: The normal rates of application for watering are as follows. The ENGINEER will adjust these rates as needed depending upon weather conditions.

Turf and Perennial Plants:	2 gallons per square foot
Trees:	10 gallons per tree
Shrubs:	3 gallons per shrub
Seedlings:	2 gallons per square foot
Ornamental Grasses:	2 gallons per square foot
Groundcovers and Vines:	2 gallons per square foot

<u>Method of Application</u>: A spray nozzle that does not damage small plants must be used when watering perennial plants or turf. Water shall be applied at the base of the plant to keep as much water as possible off plant leaves. An open hose may be used to water trees, shrubs, and seedlings if mulch and soil are not displaced by watering. Water shall trickle slowly into soil and completely soak the root zone. The CONTRACTOR must supply metering equipment as needed to assure the specified application rate of water.

<u>Method of Measurement</u>: Supplemental watering will be measured in units of 1000 gallons (3,785 liters) of water applied as directed.

<u>Basis of Payment</u>: This work will be paid for at the contract unit price per UNIT of SUPPLEMENTAL WATERING. Payment will include the cost of all water, equipment and labor needed to complete the work specified herein and to the satisfaction of the ENGINEER.

CONSTRUCTION LAYOUT

Construction layout shall be performed in accordance with the Illinois Department of Transportation Recurring Special Provision "CONSTRUCTION LAYOUT STAKES", except the Contractor shall be responsible for reestablishing the centerline of all roads, streets, and entrances as shown on the drawings. The Contractor shall also reestablish bench marks shown on the drawings for the project.

Basis of Payment: This work will be paid for at the contract lump sum price for CONSTRUCTION LAYOUT.

REMOVE EXISTING FLARED END SECTION

This work shall consist of furnishing all labor, equipment, and materials to Remove Flared End Sections in accordance with Section 501 of the Standard Specifications and the details in the plans.

The work will include the removal and disposal of the existing flared end sections as noted in the plans and encountered in the field.

This work will be paid for at the contract unit price per EACH for REMOVE EXISTING FLARED END SECTION.

State of Illinois Department of Transportation Bureau of Local Roads and Streets

SPECIAL PROVISION FOR COOPERATION WITH UTILITIES

Effective: January 1, 1999 Revised: January 1, 2007

All references to Sections or Articles in this specification shall be construed to mean specific Section or Article of the Standard Specifications for Road and Bridge Construction, adopted by the Department of Transportation.

Replace Article 105.07 of the Standard Specifications with the following:

"105.07 Cooperation with Utilities. The adjustment of utilities consists of the relocation, removal, replacement, rearrangements, reconstruction, improvement, disconnection, connection, shifting, new installation or altering of an existing utility facility in any manner.

When the plans or special provisions include information pertaining to the location of underground utility facilities, such information represents only the opinion of the Department as to the location of such utilities and is only included for the convenience of the bidder. The Department assumes no responsibility in respect to the sufficiency or the accuracy of the information shown on the plans relative to the location of the underground utility facilities.

Utilities which are to be adjusted shall be adjusted by the utility owner or the owner's representative or by the Contractor as a contract item. Generally, arrangements for adjusting existing utilities will be made by the Department prior to project construction; however, utilities will not necessarily be adjusted in advance of project construction and, in some cases, utilities will not be removed from the proposed construction limits. When utility adjustments must be performed in conjunction with construction, the utility adjustment work will be shown on the plans and/or covered by Special Provisions.

When the Contractor discovers a utility has not been adjusted by the owner or the owner's representative as indicated in the contract documents, or the utility is not shown on the plans or described in the Special Provisions as to be adjusted in conjunction with construction, the Contractor shall not interfere with said utility, and shall take proper precautions to prevent damage or interruption of the utility and shall promptly notify the Engineer of the nature and location of said utility.

All necessary adjustments, as determined by the Engineer, of utilities not shown on the plans or not identified by markers, will be made at no cost to the Contractor except traffic structures, light poles, etc., that are normally located within the proposed construction limits as hereinafter defined will not be adjusted unless required by the proposed improvement.

- (a) Limits of Proposed Construction for Utilities Paralleling the Roadway. For the purpose of this Article, limits of proposed construction for utilities extending in the same longitudinal direction as the roadway, shall be defined as follows:
 - (1) The horizontal limits shall be a vertical plane, outside of, parallel to, and 600 mm (2 ft) distant at right angles from the plan or revised slope limits.
 - In cases where the limits of excavation for structures are not shown on the plans, the horizontal limits shall be a vertical plane 1.2 m (4 ft) outside the edges of structure footings or the structure where no footings are required.
 - (2) The upper vertical limits shall be the regulations governing the roadbed clearance for the specific utility involved.
 - (3) The lower vertical limits shall be the top of the utility at the depth below the proposed grade as prescribed by the governing agency or the limits of excavation, whichever is less.
- (b) Limits of Proposed Construction for Utilities Crossing the Roadway. For the purpose of this Article, limits of proposed construction for utilities crossing the roadway in a generally transverse direction shall be defined as follows:
 - (1) Utilities crossing excavations for structures that are normally made by trenching such as sewers, underdrains, etc. and all minor structures such as manholes, inlets, foundations for signs, foundations for traffic signals, etc., the limits shall be the space to be occupied by the proposed permanent construction unless otherwise required by the regulations governing the specific utility involved.
 - (2) For utilities crossing the proposed site of major structures such as bridges, sign trusses, etc., the limits shall be as defined above for utilities extending in the same general direction as the roadway.

The Contractor may make arrangements for adjustment of utilities outside of the limits of proposed construction provided the Contractor furnishes the Department with a signed agreement with the utility owner covering the adjustments to be made. The cost of any adjustments made outside the limits of proposed construction shall be the responsibility of the Contractor unless otherwise provided.

The Contractor shall request all utility owners to field locate their facilities according to Article 107.31. The Engineer may make the request for location from the utility after receipt of notice from the Contractor. On request, the Engineer will make an inspection to verify that the utility company has field located its facilities, but will not assume responsibility for the accuracy of such work. The Contractor shall be responsible for maintaining the excavations or markers provided by the utility owners. This field location procedure may be waived if the utility owner has stated in writing to the Department it is satisfied the construction plans are sufficiently accurate. If the utility owner does not submit such statement to the Department, and they do not field locate their facilities in both horizontal and vertical alignment, the Engineer will authorize the Contractor in writing to proceed to locate the facilities in the most economical and reasonable manner, subject to the approval of the Engineer, and be paid according to Article 109.04.

The Contractor shall coordinate with any planned utility adjustment or new installation and the Contractor shall take all precautions to prevent disturbance or damage to utility facilities. Any failure on the part of the utility owner, or their representative, to proceed with any planned utility adjustment or new installation shall be reported promptly by the Contractor to the Engineer orally and in writing.

The Contractor shall take all necessary precautions for the protection of the utility facilities. The Contractor shall be responsible for any damage or destruction of utility facilities resulting from neglect, misconduct, or omission in the Contractor's manner or method of execution or nonexecution of the work, or caused by defective work or the use of unsatisfactory materials. Whenever any damage or destruction of a utility facility occurs as a result of work performed by the Contractor, the utility company will be immediately notified. The utility company will make arrangements to restore such facility to a condition equal to that existing before any such damage or destruction was done.

It is understood and agreed that the Contractor has considered in the bid all of the permanent and temporary utilities in their present and/or adjusted positions.

No additional compensation will be allowed for any delays, inconvenience, or damage sustained by the Contractor due to any interference from the said utility facilities or the operation of relocating the said utility facilities.

State of Illinois Department of Transportation Bureau of Local Roads and Streets

SPECIAL PROVISION FOR INSURANCE

Effective: February 1, 2007 Revised: August 1, 2007

All references to Sections or Articles in this specification shall be construed to mean specific Section or Article of the Standard Specifications for Road and Bridge Construction, adopted by the Department of Transportation.

The Contractor shall name the following entities as additional insured under the Contractor's general liability insurance policy in accordance with Article 107.27:

The entities listed above and their officers, employees, and agents shall be indemnified and held harmless in accordance with Article 107.26.

BITUMINOUS MATERIALS COST ADJUSTMENTS (BDE) (RETURN FORM WITH BID)

Effective: November 2, 2006 Revised: August 1, 2013

<u>Description</u>. Bituminous material cost adjustments will be made to provide additional compensation to the Contractor, or credit to the Department, for fluctuations in the cost of bituminous materials when optioned by the Contractor. The adjustments shall apply to permanent and temporary hot-mix asphalt (HMA) mixtures, bituminous surface treatments (cover and seal coats), and preventative maintenance type surface treatments. The adjustments shall not apply to bituminous prime coats, tack coats, crack filling/sealing, or joint filling/sealing.

The bidder shall indicate on the attached form whether or not this special provision will be part of the contract and submit the completed form with his/her bid. Failure to submit the form, or failure to fill out the form completely, shall make this contract exempt of bituminous materials cost adjustments.

Method of Adjustment. Bituminous materials cost adjustments will be computed as follows.

 $CA = (BPI_P - BPI_L) \times (\%AC_V / 100) \times Q$

Where: CA = Cost Adjustment, \$.

- BPI_P = Bituminous Price Index, as published by the Department for the month the work is performed, \$/ton (\$/metric ton).
- BPI_L = Bituminous Price Index, as published by the Department for the month prior to the letting, \$/ton (\$/metric ton).
- $%AC_V =$ Percent of virgin Asphalt Cement in the Quantity being adjusted. For HMA mixtures, the % AC_V will be determined from the adjusted job mix formula. For bituminous materials applied, a performance graded or cutback asphalt will be considered to be 100% AC_V and undiluted emulsified asphalt will be considered to be 65% AC_V.
- Q = Authorized construction Quantity, tons (metric tons) (see below).

For HMA mixtures measured in square yards: Q, tons = A x D x (G_{mb} x 46.8) / 2000. For HMA mixtures measured in square meters: Q, metric tons = A x D x (G_{mb} x 1) / 1000. When computing adjustments for full-depth HMA pavement, separate calculations will be made for the binder and surface courses to account for their different G_{mb} and % AC_V.

For bituminous materials measured in gallons:	Q, tons = V x 8.33 lb/gal x SG / 2000
For bituminous materials measured in liters:	Q, metric tons = V x $1.0 \text{ kg/L} \times \text{SG} / 1000$

- Where: A = Area of the HMA mixture, sq yd (sq m).
 - D = Depth of the HMA mixture, in. (mm).
 - G_{mb} = Average bulk specific gravity of the mixture, from the approved mix design.
 - = Volume of the bituminous material, gal (L).

SG = Specific Gravity of bituminous material as shown on the bill of lading.

<u>Basis of Payment</u>. Bituminous materials cost adjustments may be positive or negative but will only be made when there is a difference between the BPI_L and BPI_P in excess of five percent, as calculated by:

Percent Difference = { $(BPI_L - BPI_P) \div BPI_L$ } × 100

Bituminous materials cost adjustments will be calculated for each calendar month in which applicable bituminous material is placed; and will be paid or deducted when all other contract requirements for the work placed during the month are satisfied. The adjustments shall not apply during contract time subject to liquidated damages for completion of the entire contract.

Return With Bid

ILLINOIS DEPARTMENTOPTION FOROF TRANSPORTATIONBITUMINOUS MATERIALS COST ADJUSTMENTS

The bidder shall submit this completed form with his/her bid. Failure to submit the form, or failure to fill out the form completely, shall make this contract exempt of bituminous materials cost adjustments. After award, this form, when submitted, shall become part of the contract.

Contract I	No.:			
Company	Name:			
Contracto	r's Option:			
ls your cor	mpany opting to inclu	de this special provision	as part of the contract?	
	Yes 🗌	No 🗌		
Signature	:		Date:	
80173				

CONSTRUCTION AIR QUALITY – DIESEL RETROFIT (BDE)

Effective: June 1, 2010

The reduction of emissions of particulate matter (PM) for off-road equipment shall be accomplished by installing retrofit emission control devices. The term "equipment" refers to diesel fuel powered devices rated at 50 hp and above, to be used on the jobsite in excess of seven calendar days over the course of the construction period on the jobsite (including rental equipment).

Contractor and subcontractor diesel powered off-road equipment assigned to the contract shall be retrofitted using the phased in approach shown below. Equipment that is of a model year older than the year given for that equipment's respective horsepower range shall be retrofitted:

Effective Dates	Horsepower Range	Model Year
June 1, 2010 ^{1/}	600-749	2002
	750 and up	2006
June 1, 2011 ^{2/}	100-299	2003
	300-599	2001
	600-749	2002
	750 and up	2006
June 1, 2012 ^{2/}	50-99	2004
	100-299	2003
	300-599	2001
	600-749	2002
	750 and up	2006

1/ Effective dates apply to Contractor diesel powered off-road equipment assigned to the contract.

2/ Effective dates apply to Contractor and subcontractor diesel powered off-road equipment assigned to the contract.

The retrofit emission control devices shall achieve a minimum PM emission reduction of 50 percent and shall be:

- a) Included on the U.S. Environmental Protection Agency (USEPA) Verified Retrofit Technology List (<u>http://www.epa.gov/otaq/retrofit/verif-list.htm</u>), or verified by the California Air Resources Board (CARB) (<u>http://www.arb.ca.gov/diesel/verde/verdev.htm</u>); or
- b) Retrofitted with a non-verified diesel retrofit emission control device if verified retrofit emission control devices are not available for equipment proposed to be used on the project, and if the Contractor has obtained a performance certification from the retrofit

device manufacturer that the emission control device provides a minimum PM emission reduction of 50 percent.

Note: Large cranes (Crawler mounted cranes) which are responsible for critical lift operations are exempt from installing retrofit emission control devices if such devices adversely affect equipment operation.

Diesel powered off-road equipment with engine ratings of 50 hp and above, which are unable to be retrofitted with verified emission control devices or if performance certifications are not available which will achieve a minimum 50 percent PM reduction, may be granted a waiver by the Department if documentation is provided showing good faith efforts were made by the Contractor to retrofit the equipment.

Construction shall not proceed until the Contractor submits a certified list of the diesel powered off-road equipment that will be used, and as necessary, retrofitted with emission control devices. The list(s) shall include (1) the equipment number, type, make, Contractor/rental company name; and (2) the emission control devices make, model, USEPA or CARB verification number, or performance certification from the retrofit device manufacturer. Equipment reported as fitted with emissions control devices shall be made available to the Engineer for visual inspection of the device installation, prior to being used on the jobsite.

The Contractor shall submit an updated list of retrofitted off-road construction equipment as retrofitted equipment changes or comes on to the jobsite. The addition or deletion of any diesel powered equipment shall be included on the updated list.

If any diesel powered off-road equipment is found to be in non-compliance with any portion of this special provision, the Engineer will issue the Contractor a diesel retrofit deficiency deduction.

Any costs associated with retrofitting any diesel powered off-road equipment with emission control devices shall be considered as included in the contract unit prices bid for the various items of work involved and no additional compensation will be allowed. The Contractor's compliance with this notice and any associated regulations shall not be grounds for a claim.

Diesel Retrofit Deficiency Deduction

When the Engineer determines that a diesel retrofit deficiency exists, a daily monetary deduction will be imposed for each calendar day or fraction thereof the deficiency continues to exist. The calendar day(s) will begin when the time period for correction is exceeded and end with the Engineer's written acceptance of the correction. The daily monetary deduction will be \$1,000.00 for each deficiency identified.

The deficiency will be based on lack of diesel retrofit emissions control.

If a Contractor accumulates three diesel retrofit deficiency deductions for the same piece of equipment in a contract period, the Contractor will be shutdown until the deficiency is corrected.

Such a shutdown will not be grounds for any extension of the contract time, waiver of penalties, or be grounds for any claim.

DISADVANTAGED BUSINESS ENTERPRISE PARTICIPATION (BDE)

Effective: September 1, 2000 Revised: August 2, 2011

<u>FEDERAL OBLIGATION</u>. The Department of Transportation, as a recipient of federal financial assistance, is required to take all necessary and reasonable steps to ensure nondiscrimination in the award and administration of contracts. Consequently, the federal regulatory provisions of 49 CFR Part 26 apply to this contract concerning the utilization of disadvantaged business enterprises. For the purposes of this Special Provision, a disadvantaged business enterprise (DBE) means a business certified by the Department in accordance with the requirements of 49 CFR Part 26 and listed in the Illinois Unified Certification Program (IL UCP) DBE Directory.

STATE OBLIGATION. This Special Provision will also be used by the Department to satisfy the requirements of the Business Enterprise for Minorities, Females, and Persons with Disabilities Act, 30 ILCS 575. When this Special Provision is used to satisfy state law requirements on 100 percent state-funded contracts, the federal government has no involvement in such contracts (not a federal-aid contract) and no responsibility to oversee the implementation of this Special Provision by the Department on those contracts. DBE participation on 100 percent state-funded contracts will not be credited toward fulfilling the Department's annual overall DBE goal required by the US Department of Transportation to comply with the federal DBE program requirements.

<u>CONTRACTOR ASSURANCE</u>. The Contractor makes the following assurance and agrees to include the assurance in each subcontract that the Contractor signs with a subcontractor.

The Contractor, subrecipient, or subcontractor shall not discriminate on the basis of race, color, national origin, or sex in the performance of this contract. The Contractor shall carry out applicable requirements of 49 CFR Part 26 in the award and administration of contracts funded in whole or in part with federal or state funds. Failure by the Contractor to carry out these requirements is a material breach of this contract, which may result in the termination of this contract or such other remedy as the recipient deems appropriate.

<u>OVERALL GOAL SET FOR THE DEPARTMENT</u>. As a requirement of compliance with 49 CFR Part 26, the Department has set an overall goal for DBE participation in its federally assisted contracts. That goal applies to all federal-aid funds the Department will expend in its federally assisted contracts for the subject reporting fiscal year. The Department is required to make a good faith effort to achieve the overall goal. The dollar amount paid to all approved DBE companies performing work called for in this contract is eligible to be credited toward fulfillment of the Department's overall goal.

<u>CONTRACT GOAL TO BE ACHIEVED BY THE CONTRACTOR</u>. This contract includes a specific DBE utilization goal established by the Department. The goal has been included because the Department has determined that the work of this contract has subcontracting opportunities that may be suitable for performance by DBE companies. The determination is

based on an assessment of the type of work, the location of the work, and the availability of DBE companies to do a part of the work. The assessment indicates that, in the absence of unlawful discrimination, and in an arena of fair and open competition, DBE companies can be expected to perform _____% of the work. This percentage is set as the DBE participation goal for this contract. Consequently, in addition to the other award criteria established for this contract, the Department will only award this contract to a bidder who makes a good faith effort to meet this goal of DBE participation in the performance of the work. A bidder makes a good faith effort for award consideration if either of the following is done in accordance with the procedures set for in this Special Provision:

- (a) The bidder documents that enough DBE participation has been obtained to meet the goal: or
- (b) The bidder documents that a good faith effort has been made to meet the goal, even though the effort did not succeed in obtaining enough DBE participation to meet the goal.

<u>DBE LOCATOR REFERENCES</u>. Bidders shall consult the IL UCP DBE Directory as a reference source for DBE-certified companies. In addition, the Department maintains a letting and item specific DBE locator information system whereby DBE companies can register their interest in providing quotes on particular bid items advertised for letting. Information concerning DBE companies willing to quote work for particular contracts may be obtained by contacting the Department's Bureau of Small Business Enterprises at telephone number (217)785-4611, or by visiting the Department's website at <u>www.dot.il.gov</u>.

<u>BIDDING PROCEDURES</u>. Compliance with this Special Provision is a material bidding requirement. The failure of the bidder to comply will render the bid not responsive.

- (a) The bidder shall submit a Disadvantaged Business Utilization Plan on Department forms SBE 2025 and 2026 with the bid.
- (b) The Utilization Plan shall indicate that the bidder either has obtained sufficient DBE participation commitments to meet the contract goal or has not obtained enough DBE participation commitments in spite of a good faith effort to meet the goal. The Utilization Plan shall further provide the name, telephone number, and telefax number of a responsible official of the bidder designated for purposes of notification of plan approval or disapproval under the procedures of this Special Provision.
- (c) The Utilization Plan shall include a DBE Participation Commitment Statement, Department form SBE 2025, for each DBE proposed for the performance of work to achieve the contract goal. For bidding purposes, submission of the completed SBE 2025 forms, signed by the DBEs and faxed to the bidder will be acceptable as long as the original is available and provided upon request. All elements of information indicated on the said form shall be provided, including but not limited to the following:
 - (1) The names and addresses of DBE firms that will participate in the contract;

- (2) A description, including pay item numbers, of the work each DBE will perform;
- (3) The dollar amount of the participation of each DBE firm participating. The dollar amount of participation for identified work shall specifically state the quantity, unit price, and total subcontract price for the work to be completed by the DBE. If partial pay items are to be performed by the DBE, indicate the portion of each item, a unit price where appropriate and the subcontract price amount;
- (4) DBE Participation Commitment Statements, form SBE 2025, signed by the bidder and each participating DBE firm documenting the commitment to use the DBE subcontractors whose participation is submitted to meet the contract goal;
- (5) if the bidder is a joint venture comprised of DBE companies and non-DBE companies, the plan must also include a clear identification of the portion of the work to be performed by the DBE partner(s); and,
- (6) If the contract goal if not met, evidence of good faith efforts.

GOOD FAITH EFFORT PROCEDURES. The contract will not be awarded until the Utilization Plan submitted by the apparent successful bidder is approved. All information submitted by the bidder must be complete, accurate and adequately document that enough DBE participation has been obtained or document that good faith efforts of the bidder, in the event enough DBE participation has not been obtained, before the Department will commit to the performance of the contract by the bidder. The Utilization Plan will be approved by the Department if the Utilization Plan documents sufficient commercially useful DBE work performance to meet the contract goal or the bidder submits sufficient documentation of a good faith effort to meet the contract goal pursuant to 49 CFR Part 26, Appendix A. The Utilization Plan will not be approved by the Department if the Utilization Plan does not document sufficient DBE participation to meet the contract goal unless the apparent successful bidder documented in the Utilization Plan that it made a good faith effort to meet the goal. This means that the bidder must show that all necessary and reasonable steps were taken to achieve the contract goal. Necessary and reasonable steps are those which, by their scope, intensity and appropriateness to the objective, could reasonably be expected to obtain sufficient DBE participation, even if they were not successful. The Department will consider the quality, quantity, and intensity of the kinds of efforts that the bidder has made. Mere pro forma efforts, in other words, efforts done as a matter of form, are not good faith efforts; rather, the bidder is expected to have taken genuine efforts that would be reasonably expected of a bidder actively and aggressively trying to obtain DBE participation sufficient to meet the contract goal.

(a) The following is a list of types of action that the Department will consider as part of the evaluation of the bidder's good faith efforts to obtain participation. These listed factors are not intended to be a mandatory checklist and are not intended to be exhaustive. Other factors or efforts brought to the attention of the Department may be relevant in appropriate cases, and will be considered by the Department.

- (1) Soliciting through all reasonable and available means (e.g. attendance at pre-bid meetings, advertising and/or written notices) the interest of all certified DBE companies that have the capability to perform the work of the contract. The bidder must solicit this interest within sufficient time to allow the DBE companies to respond to the solicitation. The bidder must determine with certainty if the DBE companies are interested by taking appropriate steps to follow up initial solicitations.
- (2) Selecting portions of the work to be performed by DBE companies in order to increase the likelihood that the DBE goals will be achieved. This includes, where appropriate, breaking out contract work items into economically feasible units to facilitate DBE participation, even when the prime Contractor might otherwise prefer to perform these work items with its own forces.
- (3) Providing interested DBE companies with adequate information about the plans, specifications, and requirements of the contract in a timely manner to assist them in responding to a solicitation.
- (4) a. Negotiating in good faith with interested DBE companies. It is the bidder's responsibility to make a portion of the work available to DBE subcontractors and suppliers and to select those portions of the work or material needs consistent with the available DBE subcontractors and suppliers, so as to facilitate DBE participation. Evidence of such negotiation includes the names, addresses, and telephone numbers of DBE companies that were considered; a description of the information provided regarding the plans and specifications for the work selected for subcontracting; and evidence as to why additional agreements could not be reached for DBE companies to perform the work.
 - b. A bidder using good business judgment would consider a number of factors in negotiating with subcontractors, including DBE subcontractors, and would take a firm's price and capabilities as well as contract goals into consideration. However, the fact that there may be some additional costs involved in finding and using DBE companies is not in itself sufficient reason for a bidder's failure to meet the contract DBE goal, as long as such costs are reasonable. Also the ability or desire of a bidder to perform the work of a contract with its own organization does not relieve the bidder of the responsibility to make good faith efforts. Bidders are not, however, required to accept higher quotes from DBE companies if the price difference is excessive or unreasonable.
- (5) Not rejecting DBE companies as being unqualified without sound reasons based on a thorough investigation of their capabilities. The bidder's standing within its industry, membership in specific groups, organizations, or associations and political or social affiliations (for example union vs. non-union employee status) are not legitimate causes for the rejection or non-solicitation of bids in the bidder's efforts to meet the project goal.

- (6) Making efforts to assist interested DBE companies in obtaining bonding, lines of credit, or insurance as required by the recipient or Contractor.
- (7) Making efforts to assist interested DBE companies in obtaining necessary equipment, supplies, materials, or related assistance or services.
- (8) Effectively using the services of available minority/women community organizations; minority/women contractors' groups; local, state, and federal minority/women business assistance offices; and other organizations as allowed on a case-by-case basis to provide assistance in the recruitment and placement of DBE companies.
- (b) If the Department determines that the apparent successful bidder has made a good faith effort to secure the work commitment of DBE companies to meet the contract goal, the Department will award the contract provided that it is otherwise eligible for award. If the Department determines that the bidder has failed to meet the requirements of this Special Provision or that a good faith effort has not been made, the Department will notify the responsible company official designated in the Utilization Plan that the bid is not responsive. The notification shall include a statement of reasons for the determination.
- (c) The bidder may request administrative reconsideration of a determination adverse to the bidder within the five working days after the receipt of the notification date of the determination by delivering the request to the Department of Transportation, Bureau of Small Business Enterprises, Contract Compliance Section, 2300 South Dirksen Parkway, Room 319, Springfield, Illinois 62764 (Telefax: (217)785-1524). Deposit of the request in the United States mail on or before the fifth business day shall not be deemed delivery. The determination shall become final if a request is not made and delivered. A request may provide additional written documentation and/or argument concerning the issues raised in the determination statement of reasons, provided the documentation and arguments address efforts made prior to submitting the bid. The request will be forwarded to the Department's Reconsideration Officer. The Reconsideration Officer will extend an opportunity to the bidder to meet in person in order to consider all issues of documentation and whether the bidder made a good faith effort to meet the goal. After the review by the Reconsideration Officer, the bidder will be sent a written decision within ten working days after receipt of the request for consideration, explaining the basis for finding that the bidder did or did not meet the goal or make adequate good faith efforts to do so. A final decision by the Reconsideration Officer that a good faith effort was made shall approve the Utilization Plan submitted by the bidder and shall clear the contract for award. A final decision that a good faith effort was not made shall render the bid not responsive.

<u>CALCULATING DBE PARTICIPATION</u>. The Utilization Plan values represent work anticipated to be performed and paid for upon satisfactory completion. The Department is only able to count toward the achievement of the overall goal and the contract goal the value of payments made for the work actually performed by DBE companies. In addition, a DBE must perform a commercially useful function on the contract to be counted. A commercially useful function is

generally performed when the DBE is responsible for the work and is carrying out its responsibilities by actually performing, managing, and supervising the work involved. The Department and Contractor are governed by the provisions of 49 CFR Part 26.55(c) on questions of commercially useful functions as it affects the work. Specific counting guidelines are provided in 49 CFR Part 26.55, the provisions of which govern over the summary contained herein.

- (a) DBE as the Contractor: 100 percent goal credit for that portion of the work performed by the DBE's own forces, including the cost of materials and supplies. Work that a DBE subcontracts to a non-DBE does not count toward the DBE goals.
- (b) DBE as a joint venture Contractor: 100 percent goal credit for that portion of the total dollar value of the contract equal to the distinct, clearly defined portion of the work performed by the DBE's own forces.
- (c) DBE as a subcontractor: 100 percent goal credit for the work of the subcontract performed by the DBE's own forces, including the cost of materials and supplies, excluding the purchase of materials and supplies or the lease of equipment by the DBE subcontractor from the prime Contractor or its affiliates. Work that a DBE subcontractor in turn subcontracts to a non-DBE does not count toward the DBE goal.
- (d) DBE as a trucker: 100 percent goal credit for trucking participation provided the DBE is responsible for the management and supervision of the entire trucking operation for which it is responsible. At least one truck owned, operated, licensed, and insured by the DBE must be used on the contract. Credit will be given for the following:
 - (1) The DBE may lease trucks from another DBE firm, including an owner-operator who is certified as a DBE. The DBE who leases trucks from another DBE receives credit for the total value of the transportation services the lessee DBE provides on the contract.
 - (2) The DBE may also lease trucks from a non-DBE firm, including from an owneroperator. The DBE who leases trucks from a non-DBE is entitled to credit only for the fee or commission is receives as a result of the lease arrangement.
- (e) DBE as a material supplier:
 - (1) 60 percent goal credit for the cost of the materials or supplies purchased from a DBE regular dealer.
 - (2) 100 percent goal credit for the cost of materials of supplies obtained from a DBE manufacturer.
 - (3) 100 percent credit for the value of reasonable fees and commissions for the procurement of materials and supplies if not a regular dealer or manufacturer.

<u>CONTRACT COMPLIANCE</u>. Compliance with this Special Provision is an essential part of the contract. The Department is prohibited by federal regulations from crediting the participation of a DBE included in the Utilization Plan toward either the contract goal or the Department's overall goal until the amount to be applied toward the goals has been paid to the DBE. The following administrative procedures and remedies govern the compliance by the Contractor with the contractual obligations established by the Utilization Plan. After approval of the Utilization Plan and award of the contract, the Utilization Plan and individual DBE Participation Statements become part of the contract. If the Contract goal, and the Utilization Plan was approved and contract awarded based upon a determination of good faith, the total dollar value of DBE work calculated in the approved Utilization Plan as a percentage of the awarded contract value shall become the amended contract goal. All work indicated for performance by an approved DBE shall be performed, managed, and supervised by the DBE executing the Participation Statement.

- (a) <u>NO AMENDMENT</u>. No amendment to the Utilization Plan may be made without prior written approval from the Department's Bureau of Small Business Enterprises. All requests for amendment to the Utilization Plan shall be submitted to the Department of Transportation, Bureau of Small Business Enterprises, Contract Compliance Section, 2300 South Dirksen Parkway, Room 319, Springfield, Illinois 62764. Telephone number (217)785-4611. Telefax number (217)785-1524.
- (b) <u>TERMINATION OR REPLACEMENT</u>. The Contractor shall not terminate or replace a DBE listed on the approved Utilization Plan, or perform with other forces work designated for a listed DBE except as provided in the Special Provision.
- (c) <u>CHANGES TO WORK</u>. Any deviation from the DBE condition-of-award or contract plans, specifications, or special provisions must be approved, in writing, by the Department as provided elsewhere in the Contract. The Contractor shall notify affected DBEs in writing of any changes in the scope of work which result in a reduction in the dollar amount condition-of-award to the contract. Where the revision includes work committed to a new DBE subcontractor, not previously involved in the project, then a Request for Approval of Subcontractor, Department form BC 260A, must be signed and submitted. If the commitment of work is in the form of additional tasks assigned to an existing subcontract, than a new Request for Approval of Subcontractor shall not be required. However, the Contractor must document efforts to assure that the existing DBE subcontractor is capable of performing the additional work and has agreed in writing to the change.
- (d) <u>ALTERNATIVE WORK METHODS</u>. In addition to the above requirements for reductions in the condition of award, additional requirements apply to the two cases of Contractorinitiated work substitution proposals. Where the contract allows alternate work methods which serve to delete or create underruns in condition of award DBE work, and the Contractor selects that alternate method or, where the Contractor proposes a substitute work method or material that serves to diminish or delete work committed to a DBE and replace it with other work, then the Contractor must demonstrate one of the following:

- (1) That the replacement work will be performed by the same DBE (as long as the DBE is certified in the respective item of work) in a modification of the condition of award; or
- (2) That the DBE is aware that its work will be deleted or will experience underruns and has agreed in writing to the change. If this occurs, the Contractor shall substitute other work of equivalent value to a certified DBE or provide documentation of good faith efforts to do so; or
- (3) That the DBE is not capable of performing the replacement work or has declined to perform the work at a reasonable competitive price. If this occurs, the Contractor shall substitute other work of equivalent value to a certified DBE or provide documentation of good faith efforts to do so.
- (e) TERMINATION AND REPLACEMENT PROCEDURES. The Contractor shall not terminate or replace a DBE subcontractor listed in the approved Utilization Plan without prior written consent. This includes, but is not limited to, instances in which the Contractor seeks to perform work originally designated for a DBE subcontractor with its own forces or those of an affiliate, a non-DBE firm, or with another DBE firm. Written consent will be granted only if the Bureau of Small Business Enterprises agrees, for reasons stated in its concurrence document, that the Contractor has good cause to terminate or replace the DBE firm. Before transmitting to the Bureau of Small Business Enterprises any request to terminate and/or substitute a DBE subcontractor, the Contractor shall give notice in writing to the DBE subcontractor, with a copy to the Bureau, of its intent to request to terminate and/or substitute, and the reason for the request. The Contractor shall give the DBE five days to respond to the Contractor's notice. The DBE so notified shall advise the Bureau and the Contractor of the reasons, if any, why it objects to the proposed termination of its subcontract and why the Bureau should not approve the Contractor's action. If required in a particular case as a matter of public necessity, the Bureau may provide a response period shorter than five days.

For purposes of this paragraph, good cause includes the following circumstances:

- (1) The listed DBE subcontractor fails or refuses to execute a written contract;
- (2) The listed DBE subcontractor fails or refuses to perform the work of its subcontract in a way consistent with normal industry standards. Provided, however, that good cause does not exist if the failure or refusal of the DBE subcontractor to perform its work on the subcontract results from the bad faith or discriminatory action of the prime contractor;
- (3) The listed DBE subcontractor fails or refuses to meet the prime Contractor's reasonable, nondiscriminatory bond requirements;

- (4) The listed DBE subcontractor becomes bankrupt, insolvent, or exhibits credit unworthiness;
- (5) The listed DBE subcontractor is ineligible to work on public works projects because of suspension and debarment proceedings pursuant 2 CFR Parts 180, 215 and 1,200 or applicable state law.
- (6) You have determined that the listed DBE subcontractor is not a responsible contractor;
- (7) The listed DBE subcontractor voluntarily withdraws from the projects and provides to you written notice of its withdrawal;
- (8) The listed DBE is ineligible to receive DBE credit for the type of work required;
- (9) A DBE owner dies or becomes disabled with the result that the listed DBE contractor is unable to complete its work on the contract;
- (10) Other documented good cause that compels the termination of the DBE subcontractor. Provided, that good cause does not exist if the prime Contractor seeks to terminate a DBE it relied upon to obtain the contract so that the prime Contractor can self-perform the work for which the DBE contractor was engaged or so that the prime Contractor can substitute another DBE or non-DBE contractor after contract award.

When a DBE is terminated, or fails to complete its work on the Contract for any reason the Contractor shall make a good faith effort to find another DBE to substitute for the original DBE to perform at least the same amount of work under the contract as the terminated DBE to the extent needed to meet the established Contract goal.

(f) <u>PAYMENT RECORDS</u>. The Contractor shall maintain a record of payments for work performed to the DBE participants. The records shall be made available to the Department for inspection upon request. After the performance of the final item of work or delivery of material by a DBE and final payment therefore to the DBE by the Contractor, but not later than thirty calendar days after payment has been made by the Department to the Contractor for such work or material, the Contractor shall submit a DBE Payment Agreement on Department form SBE 2115 to the Regional Engineer. If full and final payment has not been made to the DBE, the DBE Payment Agreement shall indicate whether a disagreement as to the payment required exists between the Contractor and the DBE or if the Contractor does not have the full amount of work indicated in the Utilization Plan performed by the BDE companies indicated in the Utilization Plan and after good faith efforts are reviewed, the Department may deduct from contract payments to the Contractor the amount of the goal not achieved as liquidated and ascertained damages. The Contractor may request an administrative

reconsideration of any amount deducted as damages pursuant to subsection (h) of this part.

- (g) <u>ENFORCEMENT</u>. The Department reserves the right to withhold payment to the Contractor to enforce the provisions of this Special Provision. Final payment shall not be made on the contract until such time as the Contractor submits sufficient documentation demonstrating achievement of the goal in accordance with this Special Provision or after liquidated damages have been determined and collected.
- (h) <u>RECONSIDERATION</u>. Notwithstanding any other provision of the contract, including but not limited to Article 109.09 of the Standard Specifications, the Contractor my request administrative reconsideration of a decision to deduct the amount of the goal not achieved as liquidated damages. A request to reconsider shall be delivered to the Contract Compliance Section and shall be handled and considered in the same manner as set forth in paragraph (c) of "Good Faith Effort Procedures" of this Special Provision, except a final decision that a good faith effort was not made during contract performance to achieve the goal agreed to in the Utilization Plan shall be the final administrative decision of the Department.

DRAIN PIPE, TILE, DRAINAGE MAT, AND WALL DRAIN (BDE)

Effective: January 1, 2013

Add the following to Article 101.01 of the Standard Specifications.

"NTPEP National Transportation Product Evaluation Program"

Revise Article 1040.03(f) of the Standard Specifications to read:

"(f) Profile Wall Pipe-304. The manufacturer shall be listed as compliant through the NTPEP program and the pipe shall be according to AASHTO M 304."

Revise the first sentence of the first paragraph of Article 1040.04(a) of the Standard Specifications to read:

"The manufacturer shall be listed as compliant through the NTPEP program and the pipe shall be according to AASHTO M 252 (nominal size – 3 to 10 in. (75 to 250 mm))."

Revise Article 1040.04(b) of the Standard Specifications to read:

"(b) Corrugated PE Pipe with a Smooth Interior. The manufacturer shall be listed as compliant through the NTPEP program and the pipe shall be according to AASHTO M 294 (nominal size – 12 to 48 in. (300 to 1200 mm)). The pipe shall be Type S or D."

GRANULAR MATERIALS (BDE)

Effective: November 1, 2012

Revise the title of Article 1003.04 of the Standard Specifications to read:

"1003.04 Fine Aggregate for Bedding, Trench Backfill, Embankment, Porous Granular Backfill, Sand Backfill for Underdrains, and French Drains."

Revise Article 1003.04(c) of the Standard Specifications to read:

"(c) Gradation. The fine aggregate gradations for granular embankment, granular backfill, bedding, and trench backfill for pipe culverts and storm sewers shall be FA 1, FA 2, or FA 6 through FA 21.

The fine aggregate gradation for porous granular embankment, porous granular backfill, french drains, and sand backfill for underdrains shall be FA 1, FA 2, or FA 20, except the percent passing the No. 200 (75 μ m) sieve shall be 2±2."

Revise Article 1004.05(c) of the Standard Specifications to read:

"(c) Gradation. The coarse aggregate gradations shall be as follows.

Application	Gradation		
Blotter	CA 15		
Granular Embankment, Granular Backfill, Bedding, and Trench Backfill for Pipe Culverts and Storm Sewers	CA 6, CA 9, CA 10, CA 12, CA17, CA18, and CA 19		
Porous Granular Embankment, Porous Granular Backfill, and French Drains	CA 7, CA 8, CA 11, CA 15, CA 16 and CA 18"		

HOT-MIX ASPHALT - DENSITY TESTING OF LONGITUDINAL JOINTS (BDE)

Effective: January 1, 2010 Revised: April 1, 2012

<u>Description</u>. This work shall consist of testing the density of longitudinal joints as part of the quality control/quality assurance (QC/QA) of hot-mix asphalt (HMA). Work shall be according to Section 1030 of the Standard Specifications except as follows.

<u>Quality Control/Quality Assurance (QC/QA)</u>. Delete the second and third sentence of the third paragraph of Article 1030.05(d)(3) of the Standard Specifications.

Add the following paragraphs to the end of Article 1030.05(d)(3) of the Standard Specifications:

"Longitudinal joint density testing shall be performed at each random density test location. Longitudinal joint testing shall be located at a distance equal to the lift thickness or a minimum of 4 in. (100 mm), from each pavement edge. (i.e. for a 5 in. (125 mm) lift the near edge of the density gauge or core barrel shall be within 5 in. (125 mm) from the edge of pavement.) Longitudinal joint density testing shall be performed using either a correlated nuclear gauge or cores.

- a. Confined Edge. Each confined edge density shall be represented by a oneminute nuclear density reading or a core density and shall be included in the average of density readings or core densities taken across the mat which represents the Individual Test.
- b. Unconfined Edge. Each unconfined edge joint density shall be represented by an average of three one-minute density readings or a single core density at the given density test location and shall meet the density requirements specified herein. The three one-minute readings shall be spaced ten feet apart longitudinally along the unconfined pavement edge and centered at the random density test location."

Revise the Density Control Limits table in Article 1030.05(d)(4) of the Standard Specifications to read:

"Mixture	Parameter	Individual Test	Unconfined Edge
Composition		(includes confined	Joint Density
		edges)	Minimum
IL-4.75	Ndesign = 50	93.0 - 97.4%	91.0%
IL-9.5, IL-12.5	Ndesign ≥ 90	92.0 - 96.0%	90.0%
IL-9.5,IL-9.5L,	Ndesign < 90	92.5 - 97.4%	90.0%
IL-12.5			
IL-19.0, IL-25.0	Ndesign ≥ 90	93.0 - 96.0%	90.0%
IL-19.0, IL-19.0L,	Ndesign < 90	93.0 - 97.4%	90.0%
IL-25.0			

SMA	Ndesign = 50 & 80	93.5 - 97.4%	91.0%
All Other	Ndesign = 30	93.0 - 97.4%	90.0%"

LIQUIDATED DAMAGES (BDE)

Effective: April 1, 2013

Revise the table in Article 108.09 of the Standard Specifications to read:

"Schedule of Deductions for Each Day of Overrun in Contract Time							
Original Conti	ract Amount	Daily Charges					
From More	To and	Calendar	Work				
Than	Including	Day	Day				
\$0	\$ 100,000	\$ 475	\$ 675				
100,000	500,000	750	1,050				
500,000	1,000,000	1,025	1,425				
1,000,000	3,000,000	1,275	1,725				
3,000,000	6,000,000	1,425	2,000				
6,000,000	12,000,000	2,300	3,450				
12,000,000	And over	6,775	9,525"				

MODIFIED URETHANE PAVEMENT MARKING (BDE)

Effective: April 1, 2012

Add the following to Article 780.02 of the Standard Specifications:

"(h) Modified Urethane Pavement Marking1095.09"

Add the following to Article 780.03 of the Standard Specifications:

"(e) Modified Urethane1105.04"

Revise Article 780.11 of the Standard Specifications to read:

"780.11 Modified Urethane. The pavement shall be cleaned of all dirt, grease, glaze, or any other material that would reduce the adhesion of the markings with minimum or no damage to the pavement. New PCC pavements shall be blast-cleaned to remove all curing compounds. New asphalt and seal coated shall be in place a minimum of two weeks prior to marking applications.

Markings shall be applied on the same calendar day that the pavement surface is cleaned. If this cannot be accomplished, the surface shall be re-cleaned prior to applying the markings. Existing pavement markings shall be at least 90 percent removed. No markings shall be applied until the Engineer approves the cleaning.

Widths, lengths, and shapes of the cleaned surface shall be prepared wider than the modified urethane pavement marking material to be applied, such that a prepared area is on all sides of the urethane pavement marking material after application.

The Contractor shall notify the Engineer 72 hours prior to the placement of the markings in order than an inspector can be present during the operation. At the time of this notification, the Contractor shall indicate the manufacturer and lot numbers of urethane and reflective media that will be used. The Engineer will ensure that the approved lot numbers appear on the material package.

The pavement markings shall be applied during conditions of dry weather and subsequently dry pavement surfaces at a minimum uniform wet thickness of 25 mils (0.64 mm) according to the manufacturer's installation instructions. The application and combination of reflective media (glass beads and/or reflective elements) shall be applied at a rate specified by the manufacturer. At the time of installation the pavement surface temperature shall be 40 °F (5 °C) and rising and the ambient temperature shall be 35 °F (2 °C) and rising. The pavement surface temperature and the ambient temperatures shall be determined and documented before the start of each of marking operation. The pavement markings shall not be applied if the pavement shows any visible signs of moisture or it is anticipated that moisture, such as rain showers, may occur during the installation and curing periods."

Revise Article 780.12 of the Standard Specifications to read:

"780.12 Inspection. The epoxy, thermoplastic, preformed thermoplastic, preformed plastic Type B or C, polyurea, and modified urethane pavement markings will be inspected following installation, but no later than October 15 for preformed plastic markings, November 1 for thermoplastic and preformed thermoplastic markings, and December 15 for epoxy, polyurea, and modified urethane markings. In addition, they will be inspected following a winter performance period that extends 180 days from November 1.

Within 15 calendar days after the end of the winter performance period, a final performance inspection will be made. Final acceptance requirements are as follows.

- (a) Lane lines: 90 percent intact by area of each individual dashed line segment.
- (b) Crosswalks, stop lines, arrows, and words: 90 percent intact by area of each individual line, symbol, or letter.
- (c) Center lines, edge lines, gore markings, and channelizing lines: 90 percent intact by area measured over any 10 ft (3 m) length of any individual line regardless of width.
- (d) Entire project: measured in its entirety according to (a), (b), and (c) above, the entire project shall be 95 percent intact.

Upon completion of the final performance inspection, or after satisfactory completion of any necessary correction, the Engineer will notify the Contractor, in writing, of the date of such final performance inspection and release him/her from further performance responsibility.

If this inspection discloses any work, in whole or in part, which does not meet the inspection requirements, the Contractor shall, within 30 calendar days, completely repair or replace such work to the satisfaction of the Engineer.

This performance inspection and performance acceptance of the epoxy, thermoplastic, preformed thermoplastic, preformed plastic Type B and C pavement, polyurea, and modified urethane markings shall not delay acceptance of the entire project and final payment due if the Contractor requires and receives from the subcontractor a third party "performance" bond naming the Department as obligee in the full amount of all pavement marking quantities listed in the contract, multiplied by the contract unit price. The bond shall be executed prior to acceptance and final payment of the non-pavement marking items and shall be in full force and effect until final performance inspection and performance acceptance of the epoxy, thermoplastic, preformed thermoplastic, preformed plastic, polyurea, and modified urethane pavement markings. Execution of the third party bond shall be the option of the Contractor."

Revise Article 780.13 of the Standard Specifications to read:

"780.13 Method of Measurement. This work will be measured for payment as follows.

- (a) Contract Quantities. The requirements for the use of contract quantities shall be according to Article 202.07(a).
- (b) Measured Quantities. Lines will be measured for payment in place in feet (meters). Double yellow lines will be measured as two separate lines.

Words and symbols shall conform to the sizes and dimensions specified in the Illinois Manual on Uniform Traffic Control Devices and Standard 780001 and will be measured based on the total areas indicated in Table 1 or as specified in the plans.

Removal of existing pavement markings will be measured for payment according to Article 783.05."

Add the following to Section 780 of the Standard Specifications:

"780.14 Basis of Payment. This work will be paid for at the contract unit prices per foot (meter) of applied line width, as specified, for THERMOPLASTIC PAVEMENT MARKING - LINE; PAINT PAVEMENT MARKING - LINE; EPOXY PAVEMENT MARKING - LINE; PREFORMED PLASTIC PAVEMENT MARKING - LINE - TYPE B, C, or B - INLAID; PREFORMED THERMOPLASTIC PAVEMENT MARKING - LINE; POLYUREA PAVEMENT MARKING TYPE I - LINE; POLYUREA PAVEMENT MARKING TYPE II - LINE; MODIFIED URETHANE PAVEMENT MARKING - LINE; and/or per square foot (square meter) for THERMOPLASTIC PAVEMENT MARKING - LETTERS AND SYMBOLS; PAINT PAVEMENT MARKING - LETTERS AND SYMBOLS; PREFORMED PLASTIC PAVEMENT MARKING - TYPE B, C, or B - INLAID - LETTERS AND SYMBOLS; PREFORMED PLASTIC PAVEMENT MARKING - TYPE B, C, or B - INLAID - LETTERS AND SYMBOLS; PREFORMED THERMOPLASTIC PAVEMENT MARKING - LETTERS AND SYMBOLS; PREFORMED THERMOPLASTIC PAVEMENT MARKING - STARE AND SYMBOLS; PREFORMED THERMOPLASTIC PAVEMENT MARKING - LETTERS AND SYMBOLS; PREFORMED THERMOPLASTIC PAVEMENT MARKING - LETTERS AND SYMBOLS; PREFORMED THERMOPLASTIC PAVEMENT MARKING - LETTERS AND SYMBOLS; MODIFIED URETHANE PAVEMENT MARKING - LETTERS AND SYMBOLS.

When the Contractor has the option of applying Permanent Pavement Marking it shall be Thermoplastic, Preformed Plastic (Type B, C, or B - Inlaid), Epoxy, Preformed Thermoplastic, Polyurea, or Modified Urethane Pavement Markings. It will be paid for at the contract unit price per foot (meter) of applied line for PERMANENT PAVEMENT MARKING - LINE 4 (100), 5 (125), 6 (150), 8 (200), 12 (300), 16 (400), or 24 in. (600 mm) and per square foot (square meter) for PERMANENT PAVEMENT MARKING - LETTERS AND SYMBOLS.

Temporary pavement markings placed in lieu of permanent will be paid for according to Article 703.07.

Removal of existing pavement markings will be paid for according to Article 783.06.

*TABLE 1

LETTERS sq ft (sq m)

Size	Α	В	С	D	E	F	G	Н	
6 ft	3.1	4.0	2.7	3.4	3.3	2.6	3.3	3.4	1.5
(1.8 m)	(0.28)	(0.37)	(0.25)	(0.31)	(0.31)	(0.24)	(0.31)	(0.31)	(0.14)
8 ft	5.5	7.1	4.8	6.1	5.9	4.7	5.8	6.0	2.6
(2.4 m)	(0.51)	(0.66)	(0.45)	(0.57)	(0.55)	(0.44)	(0.54)	(0.56)	(0.24)

Size	J	K	L	М	N	0	Р	Q	R
6 ft	2.1	3.1	2.2	4.2	4.0	3.4	3.0	3.6	3.6
(1.8 m)	(0.2)	(0.28)	(0.20)	(0.39)	(0.37)	(0.31)	(0.28)	(0.33)	(0.33)
8 ft	3.7	5.7	3.8	7.4	7.1	6.0	5.3	6.3	6.3
(2.4 m)	(0.34)	(0.53)	(0.45)	(0.69)	(0.65)	(0.56)	(0.49)	(0.59)	(0.59)

Size	S	Т	U	V	W	Х	Y	Z
6 ft	3.2	2.2	3.2	2.7	4.2	2.7	2.2	2.9
(1.8 m)	(0.30)	(0.20)	(0.30)	(0.25)	(0.39)	(0.25)	(0.20)	(0.26)
8 ft	5.7	3.8	5.6	4.8	7.3	4.8	3.9	5.1
(2.4 m)	(0.53)	(0.35)	(0.52)	(0.45)	(0.68)	(0.45)	(0.36)	(0.47)

NUMBERS sq ft (sq m)

Size	1	2	3	4	5
6 ft	1.5	3.3	3.3	2.9	3.5
(1.8 m)	(0.14)	(0.31)	(0.31)	(0.26)	(0.33)
8 ft	2.6	5.8	5.8	5.1	6.1
(2.4 m)	(0.24)	(0.54)	(0.54)	(0.47)	(0.57)

Size	6	7	8	9	0
6 ft	3.5	2.2	3.8	3.5	3.4
(1.8 m)	(0.33)	(0.20)	(0.35)	(0.33)	(0.31)
8 ft	6.2	3.8	6.7	6.2	6.0
(2.4 m)	(0.58)	(0.35)	(0.62)	(0.58)	(0.56)

SYMBOLS

Symbol	Large Size	Small Size
	sq ft (sq m)	sq ft (sq m)
Through Arrow	11.5 (1.07)	6.5 (0.60)
Left or Right Arrow	15.6 (1.47)	8.8 (0.82)
2 Arrow Combination Left (or Right) and	26.0 (2.42)	14.7 (1.37)

Through		
3 Arrow Combination Left, Right, and Through	38.4 (3.56)	20.9 (1.94)
Lane Drop Arrow	41.5 (3.86)	
Wrong Way Arrow	24.3 (2.26)	
Railroad "R" 6 ft (1.8 m)	3.6 (0.33)	
Railroad "X" 20 ft (6.1 m)	54.0 (5.02)	
Handicapped Symbol	4.6 (0.43)	

*Table applies to all types of pavement marking materials."

Add the following Section to Section 1095 of the Standard Specifications:

"1095.09 Modified Urethane Pavement Marking. The modified urethane pavement marking material shall consist of a homogenous blend of modified urethane resins and pigments designed to provide a simple volumetric mixing ratio of two components (must be two volumes of Part A to one volume of Part B). No volatile solvent or fillers will be allowed.

(a) Pigmentation. The pigment content by weight (mass) of Part A shall be determined by low temperature ashing according to ASTM D 3723. The pigment content shall not vary more than ± two percent from the pigment content of the original qualified paint.

White pigment shall be Titanium Dioxide meeting ASTM D 476 Type II, Rutile.

Yellow pigment shall be Organic Yellow containing no heavy metals.

- (b) Environmental. Upon heating to application temperature, the material shall not exude fumes which are toxic or injurious persons or property when handled according to manufacturer specifications. The modified urethane pavement marking material compositions shall not contain free isocyanate functionality.
- (c) Daylight Reflectance. The daylight directional reflectance of the cured modified urethane material (without reflective media) shall be a minimum of 80 percent (white) and 50 percent (yellow) relative to magnesium oxide when tested using a color spectrophotometer with a 45 degree circumferential / zero degrees geometry, illuminant C, and two degrees observer angle. The color instrument shall measure the visible spectrum from 380 to 720 nm with a wavelength measurement interval and spectral bandpass of 10 nm. In addition, the color of the yellow modified urethane shall visually match Color Number 33538 of Federal Standard 595a with chromaticity limits as follows:

х	0.490	0.475	0.485	0.539
у	0.470	0.438	0.425	0.456

(d) Weathering Resistance. The modified urethane, when mixed in the proper ratio and applied at 14 to 16 mils (0.35 to 0.41 mm) wet film thickness to an aluminum alloy panel (Federal Test Std. No. 141, Method 2013) and allowed to cure for 72 hours at room temperature, shall be subjected to accelerated weathering for 75 hours. The accelerated weathering shall be completed by using the light and water exposure apparatus (fluorescent UV – condensation type) and tested according to ASTM G 53.

The cycle shall consist of four hours UV exposure at 122 °F (50 °C) and four hours of condensation at 104 °F (40 °C). UVB 313 bulbs shall be used. At the end of the exposure period, the material shall show no substantial change in color or gloss.

- (e) Drying Time. The modified urethane material, when mixed in the proper ratio and applied at 14 to 16 mils (0.35 to 0.41 mm) wet film thickness and with the proper saturation of glass beads, shall exhibit a no-tracking time of four minutes or less when tested according to ASTM D 711.
- (f) Adhesion. The catalyzed modified urethane pavement marking materials when applied to a 4 x 4 x 2 in. (100 x 100 x 50 mm) concrete block shall have a degree of adhesion which results in a 100 percent concrete failure in the performance of this test.

The concrete block shall be brushed on one side and have a minimum strength of 3,500 psi (24,100 kPa). A 2 in. (50 mm) square film of the mixed modified urethane shall be applied to the brushed surface and allowed to cure for 72 hours at room temperature. A 2 in. (50 mm) cube shall be affixed to the surface of the modified urethane by means of an epoxy glue. After the glue has cured for 24 hours, the modified urethane specimen shall be placed on a dynamic testing machine in such a fashion so that the specimen block is in a fixed position and the 2 in. (50 mm) cube (glued to the modified urethane surface) is attached to the dynamometer head. Direct upward pressure shall be slowly applied until the modified urethane system fails. The location of the break and the amount of concrete failure shall be recorded.

- (g) Hardness. The modified urethane marking materials, when tested according to ASTM D 2240, shall have a Shore D Hardness greater than 75. Films shall be cast on a rigid substrate at 14 to 16 mils (0.35 to 0.41 mm) in thickness and allowed to cure at room temperature for 72 hours before testing.
- (h) Abrasion. The abrasion resistance shall be evaluated according to ASTM D 4060 using a Taber Abrader with a 1,000 gram load and CS 17 wheels. The duration of test shall be 1,000 cycles. The loss shall be calculated by difference and be less than 80. The tests shall be run on cured samples of modified urethane material which have been applied at a film thickness of 14 to 16 mils (0.35 to 0.41) to code S-16 stainless steel plates. The films shall be allowed to cure at room temperature for at least 72 hours and not more than 96 hours before testing.
- (i) Tensile. When tested according to ASTM D 638, the modified urethane pavement marking materials shall have an average tensile strength of not less than 6000 psi

(41,300 kPa). The Type IV specimens shall be pulled at a rate of 1/4 in. (6.3 mm) per minute by a suitable dynamic testing machine. The samples shall be allowed to cure at 75 °F \pm 2 °F (24 °C \pm 1 °C) for a minimum of 24 hours and a maximum of 72 hours prior to performing the indicated tests.

- (j) Compressive Strength. When tested according to ASTM D 695, the catalyzed modified urethane pavement marking materials shall have a compressive strength of not less than 12,000 psi (83,000 kPa). The cast sample shall be conditioned at 75 °F ± 2 °F (24 °C ± 1 °C) for a minimum of 72 hours before performing the indicated tests. The rate of compression of these samples shall be no more than 1/4 in. (6.3 mm) per minute.
- (k) Glass Beads. The glass beads shall meet the requirements of Article 1095.04(m) and Article 1095.07 for first drop and second drop glass beads.
- (I) Packaging. The material shall be shipped to the jobsite in substantial containers and shall be plainly marked with the manufacturer's name and address, the name and color of the material, date of manufacture and batch number.
- (m) Verification. Prior to approval and use of the modified urethane pavement marking materials, the manufacturer shall submit a notarized certification of an independent laboratory, together with the results of all tests, stating these materials meet the requirements as set forth herein. The certification test report shall state the lot tested, manufacturer's name, brand name of modified urethane and date of manufacture. The certification shall be accompanied by 1 pt (1/2 L) samples each of Part A and Part B. Samples shall be sent in the appropriate volumes for complete mixing of Part A and Part B.

After approval by the Department, certification by the modified urethane manufacturer shall be submitted for each batch used. New independent laboratory certified test results and samples for testing by the Department shall be submitted any time the manufacturing process or paint formulation is changed.

- (n) Acceptance samples. Acceptance samples shall consist of 1 pt (1/2 L) samples of Part A and Part B, of each lot of paint. Samples shall be sent in the appropriate volumes for complete mixing of Part A and Part B. The samples shall be submitted to the Department for testing, together with a manufacturer's certification. The certification shall state the formulation for the lot represented is essentially identical to that used for qualification testing. All, acceptance samples will be taken by a representative of the Illinois Department of Transportation. The modified urethane pavement marking materials shall not be used until tests are completed and they have met the requirements as set forth herein.
- (o) Material Retainage. The manufacturer shall retain the test sample for a minimum of 18 months."

Add the following to Section 1105 of the Standard Specifications:

"1105.04 Modified Urethane. The modified urethane pavement marking compounds shall be applied through equipment specifically designed to precisely meter the two components in the ratio of 2:1 and approved by the manufacturer of the material. The equipment shall produce the required amount of heat at the mixing head and gun tip and maintain those temperatures within the tolerances specified. The equipment shall also have as an integral part of the gun carriage, a high pressure air spray capable of cleaning the pavement immediately prior to the marking application.

The equipment shall be capable of spraying both yellow and white modified urethane, according to the manufacturer's recommended proportions and be mounted on a truck of sufficient size and stability with an adequate power source to produce lines of uniform dimensions and prevent application failure. The truck shall have at least two urethane tanks each of 110 gal (415 L) minimum capacity and shall be equipped with hydraulic systems. It shall be capable of placing stripes on the left and right sides and placing two lines on a three-line system simultaneously with either line in a solid or intermittent pattern, in yellow or white, and applying glass beads by the double drop pressurized bead system. The system shall apply both the first drop glass beads and the second drop glass beads at a rate of 1.2 kg/L (10 lb/gal). The equipment shall be equipped with pressure gauges for each proportioning pump. All guns shall be in full view of operators at all times. The equipment shall have a metering device to register the accumulated installed quantities for each gun, each day. Each vehicle shall include at least one operator who shall be a technical expert in equipment operations and urethane application techniques. Certification of equipment shall be provided at the preconstruction conference."

PAVEMENT PATCHING (BDE)

Effective: January 1, 2010

Revise the first sentence of the second paragraph of Article 701.17(e)(1) of the Standard Specifications to read:

"In addition to the traffic control and protection shown elsewhere in the contract for pavement, two devices shall be placed immediately in front of each open patch, open hole, and broken pavement where temporary concrete barriers are not used to separate traffic from the work area."

PAVEMENT REMOVAL (BDE)

Effective: April 1, 2013

Revise Article 440.07(c) of the Standard Specifications to read:

"(c) Adjustment of Quantities. The quantity of pavement removal will be adjusted if the thickness of the existing pavement varies more than 15 percent from that shown on the plans. The quantity will be either increased or decreased according to the following table.

% change of thickness	% change of quantity
0 to less than 15	0
15 to less than 20	10
20 to less than 30	15
30 to less than 50	20

If the thickness of the existing pavement varies by 50 percent or more from that shown on the plans, the character of the work will be considered significantly changed and an adjustment to the contract will be made according to Article 104.02.

When an adjustment is made for variations in pavement thickness a resulting adjustment will also be made in the earthwork quantities when applicable.

No adjustment will be made for variations in the amount of reinforcement."

PAYMENTS TO SUBCONTRACTORS (BDE)

Effective: June 1, 2000 Revised: January 1, 2006

Federal regulations found at 49 CFR §26.29 mandate the Department to establish a contract clause to require Contractors to pay subcontractors for satisfactory performance of their subcontracts and to set the time for such payments.

State law also addresses the timing of payments to be made to subcontractors and material suppliers. Section 7 of the Prompt Payment Act, 30 ILCS 540/7, requires that when a Contractor receives any payment from the Department, the Contractor shall make corresponding, proportional payments to each subcontractor and material supplier performing work or supplying material within 15 calendar days after receipt of the Department payment. Section 7 of the Act further provides that interest in the amount of two percent per month, in addition to the payment due, shall be paid to any subcontractor or material supplier by the Contractor if the payment required by the Act is withheld or delayed without reasonable cause. The Act also provides that the time for payment required and the calculation of any interest due applies to transactions between subcontractors and lower-tier subcontractors and material suppliers throughout the contracting chain.

This Special Provision establishes the required federal contract clause, and adopts the 15 calendar day requirement of the State Prompt Payment Act for purposes of compliance with the federal regulation regarding payments to subcontractors. This contract is subject to the following payment obligations.

When progress payments are made to the Contractor according to Article 109.07 of the Standard Specifications, the Contractor shall make a corresponding payment to each subcontractor and material supplier in proportion to the work satisfactorily completed by each subcontractor and for the material supplied to perform any work of the contract. The proportionate amount of partial payment due to each subcontractor and material supplier throughout the contracting chain shall be determined by the quantities measured or otherwise determined as eligible for payment by the Department and included in the progress payment to the Contractor. Subcontractors and material suppliers shall be paid by the Contractor within 15 calendar days after the receipt of payment from the Department. The Contractor shall not hold retainage from the subcontractors. These obligations shall also apply to any payments made by subcontractors and material suppliers to their subcontractors and material suppliers; and to all payments made to lower tier subcontractors and material suppliers throughout the contracting chain. Any payment or portion of a payment subject to this provision may only be withheld from the subcontractor or material supplier to whom it is due for reasonable cause.

This Special Provision does not create any rights in favor of any subcontractor or material supplier against the State or authorize any cause of action against the State on account of any payment, nonpayment, delayed payment, or interest claimed by application of the State Prompt Payment Act. The Department will not approve any delay or postponement of the 15 day requirement except for reasonable cause shown after notice and hearing pursuant to Section

7(b) of the State Prompt Payment Act. State law creates other and additional remedies available to any subcontractor or material supplier, regardless of tier, who has not been paid for work properly performed or material furnished. These remedies are a lien against public funds set forth in Section 23(c) of the Mechanics Lien Act, 770 ILCS 60/23(c), and a recovery on the Contractor's payment bond according to the Public Construction Bond Act, 30 ILCS 550.

PLACING AND CONSOLIDATING CONCRETE (BDE)

Effective: January 1, 2013

Revise the first paragraph of Article 503.06 of the Standard Specifications to read:

"**503.06 Forms.** Forms shall be set and maintained to the lines and grades shown on the plans, and shall be tight to prevent concrete leakage."

Revise Article 503.07 of the Standard Specifications to read:

"503.07 Placing and Consolidating. No concrete shall be placed on ice, snow, or frozen foundation material.

The method and manner of placing concrete shall be such as to avoid segregation or separation of the aggregates or the displacement of the reinforcement. The external surface of all concrete shall be thoroughly worked during the operations of placing in such a manner as to work the mortar against the forms to produce a smooth finish free of honeycomb and with a minimum of water and air pockets.

Open troughs and chutes shall extend as nearly as practicable to the point of deposit. Dropping the concrete a distance of more than 5 ft (1.5 m) or depositing a large quantity at any point and running or working it along the forms will not be permitted. The concrete for walls with an average thickness of 12 in. (300 mm) or less shall be placed with tubes so that the drop is not greater than 5 ft (1.5 m).

For self-consolidating concrete, the maximum distance of horizontal flow from the point of deposit shall be 15 ft (4.6 m). The distance may be increased if the dynamic segregation index (DSI) at the maximum flow distance is 10.0 percent or less according to Illinois Test Procedure SCC-8 (Option C). The maximum distance using the DSI shall be 25 ft (7.6 m). In addition, this specified horizontal flow distance shall apply to precast products. In the case of precast prestressed concrete products, refer to the Department's "Manual of Fabrication for Precast Prestressed Concrete Products" for the specified horizontal flow distance requirements.

When the form height for placing the self-consolidating concrete is greater than 10 ft (3.0 m), direct monitoring of form pressure shall be performed by the Contractor according to Illinois Test Procedure SCC-10. The monitoring requirement is a minimum, and the Contractor shall remain responsible for adequate design of the falsework and forms. The Contractor shall record the formwork pressure during concrete placement. This information shall be used by the Contractor to prevent the placement rate from exceeding the maximum formwork pressure allowed, to monitor the thixotropic change in the concrete during the pour, and to make appropriate adjustments to the mix design. This information shall be provided to the Engineer during the pour.

When concrete is pumped, the equipment shall be suitable in kind and adequate in capacity for the work and arranged so that vibrations will not damage freshly placed concrete. Aluminum

pipe or conduit will not be permitted in pumping or placing concrete. Mixed concrete shall be supplied to maintain continuous operation of the pumping equipment.

When air entrained concrete is pumped, an accessory or accessories shall be incorporated in the discharge components to minimize air loss. The maximum allowable air loss caused by the pumping operation shall be 3.0 percent with the minimum air content at the point of discharge meeting the requirements of Article 1020.04.

Placing of concrete shall be regulated so that the pressures caused by the wet concrete will not exceed those used in the design of the forms. Special care shall be taken to fill each part of the forms by depositing the concrete as near its final position as possible, to work the coarser aggregates back from the face, and to force the concrete under and around the reinforcement bars without displacing them. Leakage through forms onto beams or girders shall not be allowed to harden and shall be removed while in a plastic state.

The concrete shall be consolidated by internal vibration unless self-consolidating concrete is used. Self-consolidating concrete may be used for inaccessible locations where consolidation by internal vibration is not practicable. The self consolidating concrete shall be rodded with a piece of lumber, conduit, or vibrator if the material has lost its fluidity prior to placement of additional concrete. The vibrator may only be permitted if it can be used in a manner that does not cause segregation as determined by the Engineer. Any other method for restoring the fluidity of the concrete shall be approved by the Engineer.

The Contractor shall provide and use a sufficient number of vibrators to ensure that consolidation can be started immediately after the concrete has been deposited in the forms.

The vibrators shall be inserted into the concrete immediately after it is deposited and shall be moved throughout the mass so as to thoroughly work the concrete around the reinforcement, embedded fixtures, and into the corners and angles of the forms. Vibrators shall not be attached to the forms, reinforcement bars, or the surface of the concrete.

Application of vibrators shall be at points uniformly spaced and not farther apart than twice the radius over which the vibration is visibly effective. The duration of the vibration at the points of insertion shall be sufficient to thoroughly consolidate the concrete into place but shall not be continued so as to cause segregation. When consolidating concrete in bridge decks, the vibrator shall be vertically inserted into the concrete for 3 - 5 seconds or for a period of time determined by the Engineer. Vibration shall be supplemented by spading when required by the Engineer. In addition to the internal vibration required herein, formed surfaces which will be exposed to view after completion of the work shall be spaded with a spading tool approved by the Engineer.

Concrete shall be placed in continuous horizontal layers. When it is necessary by reason of an emergency to place less than a complete horizontal layer in one operation, such layer shall terminate in a vertical bulkhead. Separate batches shall follow each other closely and in no case shall the interval of time between the placing of successive batches be greater than 20 minutes. If mix foaming or detrimental material is observed during placement or at the completion of a pour, the material shall be removed while the concrete is still plastic

After the concrete has taken its initial set, care shall be exercised to avoid jarring the forms or placing any strain on the ends of projecting reinforcement."

Revise Article 516.12(a) of the Standard Specifications to read:

"(a) Free Fall Placement. The free fall placement shall only be permitted in shafts that can be dewatered to ensure less than 3 in. (75 mm) of standing water exist at the time of placement without causing side wall instability. The height of free fall placement shall be a maximum of 60 ft (18.3 m) as measured from the discharge end, but it shall be reduced to a maximum of 30 ft (9.1 m) when self-consolidating concrete is used. The Contractor shall obtain approval from the Engineer to place self-consolidating concrete by free fall.

Concrete placed by free fall shall fall directly to the base without contacting either the rebar cage or shaft sidewall. Drop chutes may be used to direct concrete to the base during free fall placement.

Drop chutes used to direct placement of free fall concrete shall consist of a smooth tube of either one continuous section or multiple pieces that can be added and removed. Concrete may be placed through either a hopper at the top of the tube or side openings as the drop chute is retrieved during concrete placement. The drop chute shall be supported so that free fall does not exceed the specified maximum 60 ft (18.3 m) or 30 ft (9.1 m) at all times from the discharge end, and to ensure the concrete does not strike the rebar cage. If placement cannot be satisfactorily accomplished by free fall in the opinion of the Engineer, either a tremie or pump shall be used to accomplish the pour."

80316

PLANTING WOODY PLANTS (BDE)

Effective: January 1, 2012 Revised: August 1, 2012

Revise the second sentence of Article 253.01 of the Standard Specifications to read:

"This work shall consist of furnishing, transporting, and planting woody plants such as trees, shrubs, evergreens, vines, and seedlings."

Revise Article 253.02(a) of the Standard Specifications to read:

Revise the first sentence of Article 253.08(a) of the Standard Specifications to read:

"(a) Excavation for Deciduous Trees and Evergreen Trees."

Revise the first sentence of Article 253.08(b) of the Standard Specifications to read:

"(b) Excavation for Deciduous Shrubs, Evergreen Shrubs, Vines, and Seedlings."

Revise the first sentence of Article 253.13 of the Standard Specifications to read:

"All deciduous and evergreen trees, with the exception of multi-stem or clump form specimens, over 8 ft (2.5 m) in height shall require three 6 ft (2 m) long steel posts so placed that they are equidistant from each other and adjacent to the outside of the ball."

Revise the first sentence of the second paragraph of Article 253.14 of the Standard Specifications to read:

"This period of establishment for the plants shall not delay acceptance of the entire project and final payment due if the contractor requires and receives from the subcontractor a third party performance bond naming the Department as obligee in the full amount of the planting quantities subject to this period of establishment, multiplied by their contract unit prices."

Revise the third sentence of Article 253.16 of the Standard Specifications to read:

"Trees, shrubs, evergreens, and vines will be measured as each individual plant."

Revise Article 253.17 of the Standard Specifications to read:

"253.17 Basis of Payment. This work will be paid for at the contract unit price per each for TREES, SHRUBS, EVERGREENS, or VINES, of the species, root type, and plant size specified; and per unit for SEEDLINGS. Payment will be made according to the following schedule.

- (a) Initial Payment. Upon completion of planting, mulch covering, wrapping, and bracing, 90 percent of the pay item(s) will be paid.
- (b) Final Payment. Upon inspection and acceptance of the plant material, or upon execution of a third party bond, the remaining ten percent of the pay item(s) will be paid."

Revise the first paragraph of Article 1081.01 of the Standard Specifications to read:

"**1081.01 Trees, Shrubs, Evergreens, Vines, and Seedlings.** Trees, shrubs, evergreens, vines, and seedlings shall be according to the current standards adopted by the ANLA."

80278

PORTLAND CEMENT CONCRETE (BDE)

Effective: January 1, 2012 Revised: November 1, 2013

Revise Notes 1 and 2 of Article 312.24 of the Standard Specifications to read:

- "Note 1. Coarse aggregate shall be gradation CA 6, CA 7, CA 9, CA 10, or CA 11, Class D quality or better. Article 1020.05(d) shall apply.
- Note 2. Fine aggregate shall be FA 1 or FA 2. Article 1020.05(d) shall apply."

Revise the first paragraph of Article 312.26 of the Standard Specifications to read:

"312.26 Proportioning and Mix Design. At least 60 days prior to start of placing CAM II, the Contractor shall submit samples of materials for proportioning and testing. The mixture shall contain a minimum of 200 lb (90 kg) of cement per cubic yard (cubic meter). Portland cement may be replaced with fly ash according to Article 1020.05(c)(1), however the minimum portland cement content in the mixture shall be 170 lbs/cu yd (101 kg/cu m). Blends of coarse and fine aggregates will be permitted, provided the volume of fine aggregate does not exceed the volume of coarse aggregate. The Engineer will determine the proportions of materials for the mixture. However, the Contractor may substitute their own mix design. Article 1020.05(a) shall apply and a Level III PCC Technician shall develop the mix design."

Revise the second paragraph of Article 503.22 of the Standard Specifications to read:

Other cast-in-place concrete for structures will be paid for at the contract unit price per cubic yard (cubic meter) for CONCRETE HANDRAIL, CONCRETE ENCASEMENT, and SEAL COAT CONCRETE."

Add the following to Article 1003.02 of the Standard Specifications:

- (e) Alkali Reaction.
 - (1) ASTM C 1260. Each fine aggregate will be tested by the Department for alkali reaction according to ASTM C 1260. The test will be performed with Type I or II portland cement having a total equivalent alkali content (Na₂O + 0.658K₂O) of 0.90 percent or greater. The Engineer will determine the assigned expansion value for each aggregate, and these values will be made available on the Department's Alkali-Silica Potential Reactivity Rating List. The Engineer may differentiate aggregate based on ledge, production method, gradation number, or other factors. An expansion value of 0.03 percent will be assigned to limestone or dolomite fine

aggregates (manufactured stone sand). However, the Department reserves the right to perform the ASTM C 1260 test.

- (2) ASTM C 1293 by Department. In some instances, such as chert natural sand or other fine aggregates, testing according to ASTM C 1260 may not provide accurate test results. In this case, the Department may only test according to ASTM C 1293.
- (3) ASTM C 1293 by Contractor. If an individual aggregate has an ASTM C 1260 expansion value that is unacceptable to the Contractor, an ASTM C 1293 test may be performed by the Contractor to evaluate the Department's ASTM C 1260 test result. The laboratory performing the ASTM C 1293 test shall be approved by the Department according to the current Bureau of Materials and Physical Research Policy Memorandum "Minimum Laboratory Requirements for Alkali-Silica Reactivity (ASR) Testing".

The ASTM C 1293 test shall be performed with Type I or II portland cement having a total equivalent alkali content (Na₂O + $0.658K_2O$) of 0.80 percent or greater. The interior vertical wall of the ASTM C 1293 recommended container (pail) shall be half covered with a wick of absorbent material consisting of blotting paper. If the testing laboratory desires to use an alternate container, wick of absorbent material, or amount of coverage inside the container with blotting paper, ASTM C 1293 test results with an alkali-reactive aggregate of known expansion characteristics shall be provided to the Engineer for review and approval. If the expansion is less than 0.040 percent after one year, the aggregate will be assigned an ASTM C 1260 expansion value of 0.08 percent that will be valid for two years, unless the Engineer determines the aggregate has changed significantly. If the aggregate is manufactured into multiple gradation numbers, and the other gradation numbers have the same or lower ASTM C 1260 value, the ASTM C 1293 test result may apply to multiple gradation numbers.

The Engineer reserves the right to verify a Contractor's ASTM C 1293 test result. When the Contractor performs the test, a split sample shall be provided to the Engineer. The Engineer may also independently obtain a sample at any time. The aggregate will be considered reactive if the Contractor or Engineer obtains an expansion value of 0.040 percent or greater.

Revise the first paragraph of Article 1004.01(e)(5) of the Standard Specifications to read:

"Crushed concrete, crushed slag, or lightweight aggregate for portland cement concrete shall be stockpiled in a moist condition (saturated surface dry or greater) and the moisture content shall be maintained uniformly throughout the stockpile by periodic sprinkling." Revise Article 1004.02(d) of the Standard Specifications to read:

- "(d)Combining Sizes. Each size shall be stored separately and care shall be taken to prevent them from being mixed until they are ready to be proportioned. Separate compartments shall be provided to proportion each size.
 - (1) When Class BS concrete is to be pumped, the coarse aggregate gradation shall have a minimum of 45 percent passing the 1/2 in. (12.5 mm) sieve. The Contractor may combine two or more coarse aggregate sizes, consisting of CA 7, CA 11, CA 13, CA 14, and CA 16, provided a CA 7 or CA 11 is included in the blend.
 - (2) If the coarse aggregate is furnished in separate sizes, they shall be combined in proportions to provide a uniformly graded coarse aggregate grading within the following limits.

Class	Combined	Sieve Size and Percent Passing									
of	Sizes	2 1/2	2	1 3/4	1 1/2	1	1/2	No.			
Concrete 1/	01203	in.	in.	in.	in.	in.	in.	4			
PV 2/											
	CA 5 & CA 7			100	98±2	72±22	22±12	3±3			
	CA 5 & CA 11			100	98±2	72±22	22±12	3±3			
SI and SC ^{2/}											
	CA 3 & CA 7	100	95±5			55±25	20±10	3±3			
	CA 3 & CA 11	100	95±5			55±25	20±10	3±3			
	CA 5 & CA 7			100	98±2	72±22	22±12	3±3			
	CA 5 & CA 11			100	98±2	72±22	22±12	3±3			

Class	Combined	Sieve Size (metric) and Percent Passing								
of	Sizes	63	50	45	37.5	25	12.5	4.75		
Concrete 1/	01263	mm	mm	mm	mm	mm	mm	mm		
PV 2/										
	CA 5 & CA 7			100	98±2	72±22	22±12	3±3		
	CA 5 & CA 11			100	98±2	72±22	22±12	3±3		
SI and SC 2/										
	CA 3 & CA 7	100	95±5			55±25	20±10	3±3		
	CA 3 & CA 11	100	95±5			55±25	20±10	3±3		
	CA 5 & CA 7			100	98±2	72±22	22±12	3±3		
	CA 5 & CA 11			100	98±2	72±22	22±12	3±3		

1/ See Table 1 of Article 1020.04.

2/ Any of the listed combination of sizes may be used."

Add the following to Article 1004.02 of the Standard Specifications:

(g) Alkali Reaction.

- (1) ASTM C 1260. Each coarse aggregate will be tested by the Department for alkali reaction according to ASTM C 1260. The test will be performed with Type I or II portland cement having a total equivalent alkali content (Na₂O + 0.658K₂O) of 0.90 percent or greater. The Engineer will determine the assigned expansion value for each aggregate, and these values will be made available on the Department's Alkali-Silica Potential Reactivity Rating List. The Engineer may differentiate aggregate based on ledge, production method, gradation number, or other factors. An expansion value of 0.05 percent will be assigned to limestone or dolomite coarse aggregates. However, the Department reserves the right to perform the ASTM C 1260 test.
- (2) ASTM C 1293 by Department. In some instances testing a coarse aggregate according to ASTM C 1260 may not provide accurate test results. In this case, the Department may only test according to ASTM C 1293.
- (3) ASTM C 1293 by Contractor. If an individual aggregate has an ASTM C 1260 expansion value that is unacceptable to the Contractor, an ASTM C 1293 test may be performed by the Contractor according to Article 1003.02(e)(3).

Revise the first paragraph of Article 1019.06 of the Standard Specifications to read:

"1019.06 Contractor Mix Design. A Contractor may submit their own mix design and may propose alternate fine aggregate materials, fine aggregate gradations, or material proportions. Article 1020.05(a) shall apply and a Level III PCC Technician shall develop the mix design."

Revise Section 1020 of the Standard Specifications to read:

"SECTION 1020. PORTLAND CEMENT CONCRETE

1020.01 Description. This item shall consist of the materials, mix design, production, testing, curing, low air temperature protection, and temperature control of concrete.

1020.02 Materials. Materials shall be according to the following.

Item	Article/Section
(a) Cement	
(b) Water	
(c) Fine Aggregate	
(d) Coarse Aggregate	

(e)	Concrete Admixtures	
(f)	Finely Divided Minerals	
	Concrete Curing Materials	
	Straw	
	Calcium Chloride	

1020.03 Equipment. Equipment shall be according to the following.

Item	Article/Section
(a) Concrete Mixers and Trucks	
(b) Batching and Weighing Equipment	
(c) Automatic and Semi-Automatic Batching Equipment	
(d) Water Supply Equipment	
(e) Membrane Curing Equipment	
(f) Mobile Portland Cement Concrete Plants	

1020.04 Concrete Classes and General Mix Design Criteria. The classes of concrete shown in Table 1 identify the various mixtures by the general uses and mix design criteria. If the class of concrete for a specific item of construction is not specified, Class SI concrete shall be used.

For the minimum cement factor in Table 1, it shall apply to portland cement, portlandpozzolan cement, and portland blast-furnace slag except when a particular cement is specified in the Table.

The Contractor shall not assume that the minimum cement factor indicated in Table 1 will produce a mixture that will meet the specified strength. In addition, the Contractor shall not assume that the maximum finely divided mineral allowed in a mix design according to Article 1020.05(c) will produce a mixture that will meet the specified strength. The Contractor shall select a cement factor within the allowable range that will obtain the specified strength. The Contractor shall take into consideration materials selected, seasonal temperatures, and other factors which may require the Contractor to submit multiple mix designs.

For a portland-pozzolan cement, portland blast-furnace slag cement, or when replacing portland cement with finely divided minerals per Articles 1020.05(c) and 1020.05(d), the portland cement content in the mixture shall be a minimum of 375 lbs/cu yd (222 kg/cu m). When the total of organic processing additions, inorganic processing additions, and limestone exceed 5.0 percent in the cement, the minimum portland cement content in the mixture shall be 400 lbs/cu yd (237 kg/cu m). When calculating the portland cement portion in the portland-pozzolan or portland blast-furnace slag cement, the AASHTO M 240 tolerance may be ignored.

Special classifications may be made for the purpose of including the concrete for a particular use or location as a separate pay item in the contract. The concrete used in such cases shall conform to this section.

	TABLE 1. CLASSES OF CONCRETE AND MIX DESIGN CRITERIA										
Class of Conc.	Use	Specification Section Reference	Cement Factor cwt/cu yd (3)		Water / Cement Ratio Ib/Ib	S I m p in.	Mix Design Compressive Strength (Flexural Strength) psi, minimum Days		ve ngth)	Air Content %	Coarse Aggregate Gradations (14)
			Min.	Max		(4)	3	14	28		
PV	Pavement Base Course Base Course Widening Driveway Pavement Shoulders Shoulder Curb	420 or 421 353 354 423 483 662	5.65 (1) 6.05 (2)	7.05	0.32 - 0.42	2 - 4 (5)	Ty III 3500 (650)	3500 (650)		5.0 - 8.0 (5)	CA 5 & CA 7, CA 5 & CA 11, CA 7, CA 11, or CA 14
PP	Pavement Patching Bridge Deck Patching (10)	442					Article	3200 (600) 701.17(e)(3)b.		
	PP-1		6.50 6.20 (Ty III)	7.50 7.20 (Ty III)	0.32 - 0.44		at	48 hour	s	4.0 - 7.0	CA 7, CA 11,
	PP-2		7.35	8.20	0.32 - 0.38		-	t 24 hour	-	4.0 - 6.0	CA 13, CA 14,
	PP-3		7.35 (Ty III) (8)	7.35 (Ty III) (8)	0.32 - 0.35	2 - 4	-	t 16 hour	-	4.0 - 6.0	or CA 16
	PP-4		6.00 (9)	6.25 (9)	0.32 - 0.50		-	at 8 hours		4.0 - 6.0	ļ
	PP-5		6.75 (9)	6.75 (9)	0.32 - 0.40	2 - 8	-	at 4 hours		4.0 - 6.0	
RR	Railroad Crossing	422	6.50 6.20 (Ty III)	7.50 7.20 (Ty III)	0.32 - 0.44			500 (650 <u>t 48 hou</u> r		4.0 - 7.0	CA 7, CA 11, or CA 14
BS	Bridge Superstructure Bridge Approach Slab	503	6.05	7.05	0.32 - 0.44	2 - 4 (5)		4000 (675)		5.0 - 8.0 (5)	CA 7, CA 11, or CA 14 (7)
PC	Various Precast Concrete Items Wet Cast Dry Cast	1042	5.65 5.65 (TY III)	7.05 7.05 (TY III)	0.32 - 0.44 0.25 - 0.40		See	Section	1042	5.0 - 8.0 N/A	CA7, CA11,CA 13, CA 14, CA 16, or CA 7 & CA 16
PS	Precast Prestressed Members Precast Prestressed Piles and Extensions	504 512	5.65 5.65 (TY III)	7.05 7.05 (TY III)	0.32 - 0.44	1 - 4			Plans 5000	5.0 - 8.0	CA 11 (11), CA 13, CA 14 (11), or CA 16
	Precast Prestressed Sight Screen	639							3500		

		TABLE 1. C	CLASSES OF (CONCRETE	E AND MIX I	DESIG	IN CRIT	ERIA			
Class of Conc.	Use	Specification Section Reference	Ceme Facto cwt/cu (3)	yd	Water / Cement Ratio Ib/Ib	S U m p in.	Compi (Flex	Aix Desig ressive S tural Stre si, minimu Days	trength ngth) um	Air Content %	Coarse Aggregate Gradations (14)
			Min.	Max		(4)	3	14	28		
DS	Drilled Shaft (12) Metal Shell Piles (12) Sign Structures Drilled Shaft (12) Light Tower Foundation (12)	516 512 734 837	6.65	7.05	0.32 - 0.44	6 - 8 (6)		4000 (675)		5.0 - 8.0	CA 13, CA 14, CA 16, or a blend of these gradations.
SC	Seal Coat	503	5.65 (1) 6.05 (2)	7.05	0.32 - 0.44	3 - 5		3500 (650)			CA 3 & CA 7, CA 3 & CA 11, CA 5 & CA 7, CA 5 & CA 11, CA 7, or CA 11
SI	Structures (except Superstructure) Sidewalk Slope Wall Encasement Box Culverts End Section and Collar Curb, Gutter, Curb & Gutter, Median, and Paved Ditch Concrete Barrier Sign Structures Spread Footing Concrete Foundation Pole Foundation (12) Traffic Signal Foundation Drilled Shaft (12) Square or Rectangular	503 424 511 512 540 542 606 637 734 836 878	5.65 (1) 6.05 (2)	7.05	0.32 - 0.44	2 - 4 (5)		3500 (650)		5.0 - 8.0 (5)	CA 3 & CA 7, CA 3 & CA 11, CA 5 & CA 7, CA 5 & CA 7, CA 5 & CA 11, CA 7, CA 11, CA 13, CA 14, or CA 16 (13)

- Notes: (1) Central-mixed.
 - (2) Truck-mixed or shrink-mixed.
 - (3) For Class SC concrete and for any other class of concrete that is to be placed underwater, except Class DS concrete, the cement factor shall be increased by ten percent.
 - (4) The maximum slump may be increased to 7 in. when a high range water-reducing admixture is used for all classes of concrete, except Class PV, SC, and PP. For Class SC, the maximum slump may be increased to 8 in. For Class PP-1, the maximum slump may be increased to 6 in. For Class PS, the 7 in. maximum slump may be increased to 8 1/2 in. if the high range water-reducing admixture is the polycarboxylate type.
 - (5) The slump range for slipform construction shall be 1/2 to 2 1/2 in. and the air content range shall be 5.5 to 8.0 percent.
 - (6) If concrete is placed to displace drilling fluid, or against temporary casing, the slump shall be 8 10 in. at the point of placement. If a water-reducing admixture is used in lieu of a high range water-reducing admixture according to Article 1020.05(b)(7), the slump shall be 2 4 in.
 - (7) For Class BS concrete used in bridge deck patching, the coarse aggregate gradation shall be CA 13, CA 14, or CA 16, except CA 11 may be used for full-depth patching.
 - (8) In addition to the Type III portland cement, 100 lb/cu yd of ground granulated blast-furnace slag and 50 lb/cu yd of microsilica (silica fume) shall be used. For an air temperature greater than 85 °F, the Type III portland cement may be replaced with Type I or II portland cement.
 - (9) The cement shall be a rapid hardening cement from the Department's "Approved List of Packaged, Dry, Rapid Hardening Cementitious Materials for Concrete Repairs" for PP-4 and calcium aluminate cement for PP-5.
 - (10) For Class PP concrete used in bridge deck patching, the coarse aggregate gradation shall be CA 13, CA 14, or CA 16, except CA 11 may be used for full-depth patching. In addition, the mix design shall have 72 hours to obtain a 4,000 psi compressive or 675 psi flexural strength for all PP mix designs.
 - (11) The nominal maximum size permitted is 3/4 in. Nominal maximum size is defined as the largest sieve which retains any of the aggregate sample particles.
 - (12) The concrete mix shall be designed to remain fluid throughout the anticipated duration of the pour plus one hour. At the Engineer's discretion, the Contractor may be required to conduct a minimum 2 cu yd trial batch to verify the mix design.
 - (13) CA 3 or CA 5 may be used when the nominal maximum size does not exceed two-thirds the clear distance between parallel reinforcement bars, or between the reinforcement bar and the form. Nominal maximum size is defined in Note 11.
 - (14) Alternate combinations of gradation sizes may be used with the approval of the Engineer. Refer also to Article 1004.02(d) for additional information on combining sizes.

	T	ABLE 1. CLA	ASSES OF CO	NCRETE AN	D MIX DES	IGN CRI	TERIA (metric)					
Class of Conc.	Use	Specification Section Reference	Cement Factor kg/cu m (3)		Water / Cement Ratio kg/kg	S I u m p	Compr (Flex	Mix Design Compressive Strength (Flexural Strength) kPa, minimum Days		Compressive Strength (Flexural Strength) kPa, minimum		Air Content %	Coarse Aggregate Gradations (14)
			Min.	Max		mm (4)	3	14	28				
PV	Pavement Base Course Base Course Widening Driveway Pavement Shoulders Shoulder Curb	420 or 421 353 354 423 483 662	335 (1) 360 (2)	418	0.32 - 0.42	50 - 100 (5)	Ty III 24,000 (4500)	24,000 (4500)		5.0 - 8.0 (5)	CA 5 & CA 7, CA 5 & CA 11, CA 7, CA 11, or CA 14		
PP	Pavement Patching Bridge Deck Patching (10)	442					22,100 (4150) Article 701.17(e)(3)b.						
	PP-1		385 365 (Ty III)	445 425 (Ty III)	0.32 - 0.44	50 - 100	а	at 48 hours		4.0 - 7.0	CA 7, CA 11, CA 13, CA 14,		
	PP-2		435	485	0.32 - 0.38		а	t 24 hou	rs	4.0 - 6.0	or CA 16		
	PP-3			435 (Ty III) (8)			-	t 16 hou	-	4.0 - 6.0			
	PP-4		355 (9)	370 (9)	0.32 - 0.50	50 - 150		at 8 hour		4.0 - 6.0			
	PP-5		400 (9)	400 (9)	0.32 - 0.40	50 - 200		at 4 hour	-	4.0 - 6.0			
RR	Railroad Crossing	422	385 365 (Ty III)	445 425 (Ty III)	0.32 - 0.44	50 - 100		,000 (45) t 48 houi		4.0 - 7.0	CA 7, CA 11, or CA 14		
BS	Bridge Superstructure Bridge Approach Slab	503	360	418	0.32 - 0.44	50 - 100 (5)		27,500 (4650)		5.0 - 8.0 (5)	CA 7, CA 11, or CA 14 (7)		
PC	Various Precast Concrete Items Wet Cast Dry Cast	1042	335 335 (TY III)	418 418 (TY III)	0.32 - 0.44 0.25 - 0.40	25 - 100 0 - 25	See	Section	1042		CA7, CA11, CA13, CA 14, CA 16, or CA 7 & CA 16		
PS	Precast Prestressed Members Precast Prestressed Piles and Extensions Precast Prestressed Sight Screen	504 512 639	335 335 (TY III)	418 418 (TY III)	0.32 - 0.44	25 - 100			Plans 34,500 24.000		CA 11 (11), CA 13, CA 14 (11), or CA 16		

	TA	BLE 1. CLAS	SSES OF CON	CRETE AN	ID MIX DES	IGN CRI	TERIA (metric)			
Class of Conc.	Use	Specification Section Reference	Ceme Facto kg/cu (3) Min.	Dr	Water / Cement Ratio kg/kg	S I m p mm (4)	Compi (Flex	Aix Desig ressive S cural Stre ra, minim Days 14	trength ngth)	Air Content %	Coarse Aggregate Gradations (14)
DS	Drilled Shaft (12) Metal Shell Piles (12) Sign Structures Drilled Shaft (12) Light Tower Foundation (12)	516 512 734 837	395	418	0.32 - 0.44			27,500 (4650)		5.0 - 8.0	CA 13, CA 14, CA 16, or a blend of these gradations.
SC	Seal Coat	503	335 (1) 360 (2)	418	0.32 - 0.44	75 - 125		24,000 (4500)			CA 3 & CA 7, CA 3 & CA 11, CA 5 & CA 7, CA 5 & CA 11, CA 7, or CA 11
SI	Structures (except Superstructure) Sidewalk Slope Wall Encasement Box Culverts End Section and Collar Curb, Gutter, Curb & Gutter, Median, and Paved Ditch Concrete Barrier Sign Structures Spread Footing Concrete Foundation Pole Foundation (12) Traffic Signal Foundation Drilled Shaft (12) Square or Rectangular	503 424 511 512 540 542 606 637 734 836 878	335 (1) 360 (2)	418	0.32 - 0.44	50 - 100 (5)		24,000 (4500)		5.0 - 8.0 (5)	CA 3 & CA 7, CA 3 & CA 11, CA 5 & CA 7, CA 5 & CA 11, CA 7, CA 11, CA 7, CA 11, CA 13, CA 14, or CA 16 (13)

- Notes: (1) Central-mixed.
 - (2) Truck-mixed or shrink-mixed.
 - (3) For Class SC concrete and for any other class of concrete that is to be placed underwater, except Class DS concrete, the cement factor shall be increased by ten percent.
 - (4) The maximum slump may be increased to 175 mm when a high range water-reducing admixture is used for all classes of concrete except Class PV, SC, and PP. For Class SC, the maximum slump may be increased to 200 mm. For Class PP-1, the maximum slump may be increased to 150 mm. For Class PS, the 175 mm maximum slump may be increased to 215 mm if the high range water-reducing admixture is the polycarboxylate type.
 - (5) The slump range for slipform construction shall be 13 to 64 mm and the air content range shall be 5.5 to 8.0 percent.
 - (6) If concrete is placed to displace drilling fluid, or against temporary casing, the slump shall be 200 250 mm at the point of placement. If a water-reducing admixture is used in lieu of a high range water-reducing admixture according to Article 1020.05(b)(7), the slump shall be 50 100 mm.
 - (7) For Class BS concrete used in bridge deck patching, the coarse aggregate gradation shall be CA 13, CA 14, or CA 16, except CA 11 may be used for full-depth patching.
 - (8) In addition to the Type III portland cement, 60 kg/cu m of ground granulated blast-furnace slag and 30 kg/cu m of microsilica (silica fume) shall be used. For an air temperature greater than 30 °C, the Type III portland cement may be replaced with Type I or II portland cement.
 - (9) The cement shall be a rapid hardening cement from the Department's "Approved List of Packaged, Dry, Rapid Hardening Cementitious Materials for Concrete Repairs" for PP-4 and calcium aluminate cement for PP-5.
 - (10) For Class PP concrete used in bridge deck patching, the coarse aggregate gradation shall be CA 13, CA 14, or CA 16, except CA 11 may be used for full-depth patching. In addition, the mix design shall have 72 hours to obtain a 27,500 kPa compressive or 4,650 kPa flexural.
 - (11) The nominal maximum size permitted is 19 mm. Nominal maximum size is defined as the largest sieve which retains any of the aggregate sample particles.
 - (12) The concrete mix shall be designed to remain fluid throughout the anticipated duration of the pour plus one hour. At the Engineer's discretion, the Contractor may be required to conduct a minimum 1.5 cu m trial batch to verify the mix design.
 - (13) CA 3 or CA 5 may be used when the nominal maximum size does not exceed two-thirds the clear distance between parallel reinforcement bars, or between the reinforcement bar and the form. Nominal maximum size is defined in Note 11.
 - (14) Alternate combinations of gradation sizes may be used with the approval of the Engineer. Refer also to Article 1004.02(d) for additional information on combining sizes.

Self-consolidating concrete is a flowable mixture that does not require mechanical vibration for consolidation. Self-consolidating concrete mix designs may be developed for Class BS, PC, PS, DS, and SI concrete. Self-consolidating concrete mix designs may also be developed for precast concrete products that are not subjected to Class PC concrete requirements according to Section 1042. The mix design criteria for the concrete mixture shall be according to Article 1020.04 with the following exceptions.

- (a) The slump requirements shall not apply.
- (b) The concrete mixture should be uniformly graded, and information in the "Portland Cement Concrete Level III Technician Course Manual of Instructions for Design of Concrete Mixtures" may be used to develop the uniformly graded mix design. The coarse aggregate gradations shall be CA 11, CA 13, CA 14, CA 16, or a blend of these gradations. However, the final gradation when using a single coarse aggregate or combination of coarse aggregates shall have 100 percent pass the 1 in. (25 mm) sieve, and minimum 95 percent pass the 3/4 in. (19 mm) sieve. The fine aggregate proportion shall be a maximum 50 percent by weight (mass) of the total aggregate used.
- (c) The slump flow range shall be 22 in. (560 mm) minimum to 28 in. (710 mm) maximum and tested according to Illinois Test Procedure SCC-2.
- (d) The visual stability index shall be a maximum of 1 and tested according to Illinois Test Procedure SCC-2.
- (e) The J-Ring value shall be a maximum of 2 in. (50 mm) and tested according to Illinois Test Procedure SCC-3. The L-Box blocking ratio shall be a minimum of 80 percent and tested according to Illinois Test Procedure SCC-3. The Contractor has the option to select either test.
- (f) The hardened visual stability index shall be a maximum of 1 and tested according to Illinois Test Procedure SCC-6.
- (g) If Class PC concrete requirements do not apply to the precast concrete product according to Section 1042, the maximum cement factor shall be 7.05 cwt/cu yd (418 kg/cu m) and the maximum allowable water/cement ratio shall be 0.44.
- (h) If the measured slump flow, visual stability index, J-Ring value, or L-Box blocking ratio fall outside the limits specified, a check test will be made. In the event of a second failure, the Engineer may refuse to permit the use of the batch of concrete represented.

The Contractor may use water or self-consolidating admixtures at the jobsite to obtain the specified slump flow, visual stability index, J-ring value, or L-box blocking ratio. The maximum design water/cement ratio shall not be exceeded.

1020.05 Other Concrete Criteria. The concrete shall be according to the following.

(a) Proportioning and Mix Design. For all Classes of concrete, it shall be the Contractor's responsibility to determine mix design material proportions and to proportion each batch of concrete. A Level III PCC Technician shall develop the mix design for all Classes of concrete, except Classes PC and PS. The mix design, submittal information, trial batch, and Engineer verification shall be according to the "Portland Cement Concrete Level III Technician" course material.

The Contractor shall provide the mix designs a minimum of 45 calendar days prior to production. More than one mix design may be submitted for each class of concrete.

The Engineer will verify the mix design submitted by the Contractor. Verification of a mix design shall in no manner be construed as acceptance of any mixture produced. Once a mix design has been verified, the Engineer shall be notified of any proposed changes.

Tests performed at the jobsite will determine if a mix design can meet specifications. If the tests indicate it cannot, the Contractor shall make adjustments to a mix design, or submit a new mix design if necessary, to comply with the specifications.

(b) Admixtures. The Contractor shall be responsible for using admixtures and determining dosages for all Classes of concrete, cement aggregate mixture II, and controlled low-strength material that will produce a mixture with suitable workability, consistency, and plasticity. In addition, admixture dosages shall result in the mixture meeting the specified plastic and hardened properties. The Contractor shall obtain approval from the Engineer to use an accelerator when the concrete temperature is greater than 60 °F (16 °C). However, this accelerator approval by the Engineer will not be required for Class PP, RR, PC, and PS concrete. The accelerator shall be the non-chloride type unless otherwise specified in the contract plans.

The Department will maintain an Approved List of Corrosion Inhibitors. Corrosion inhibitor dosage rates shall be according to Article 1020.05(b)(10). For information on approved controlled low-strength material air-entraining admixtures, refer to The Department will also maintain an Approved List of Concrete Article 1019.02. Admixtures, and an admixture technical representative shall be consulted by the Contractor prior to the pour when determining an admixture dosage from this list or when making minor admixture dosage adjustments at the jobsite. The dosage shall be within the range indicated on the approved list unless the influence by other admixtures, jobsite conditions (such as a very short haul time), or other circumstances warrant a dosage outside the range. The Engineer shall be notified when a dosage is proposed outside the range. To determine an admixture dosage, air temperature, concrete temperature, cement source and quantity, finely divided mineral sources and quantity, influence of other admixtures, haul time, placement conditions, and other factors as appropriate shall be considered. The Engineer may request the Contractor to have a batch of concrete mixed in the lab or field to verify the admixture dosage is correct. An admixture dosage or combination of admixture dosages shall not delay the initial set of concrete by more than one hour. When a retarding admixture is required or appropriate for a bridge deck or bridge deck overlay pour, the initial set time shall be delayed until the deflections due to the concrete dead load are no longer a concern for inducing cracks in the completed work. However, a retarding admixture shall not be used to further extend the pour time and justify the alteration of a bridge deck pour sequence.

When determining water in admixtures for water/cement ratio, the Contractor shall calculate 70 percent of the admixture dosage as water, except a value of 50 percent shall be used for a latex admixture used in bridge deck latex concrete overlays.

The sequence, method, and equipment for adding the admixtures shall be approved by the Engineer. Admixtures shall be added to the concrete separately. An accelerator shall always be added prior to a high range water-reducing admixture, if both are used.

Admixture use shall be according to the following.

- (1) When the atmosphere or concrete temperature is 65 °F (18 °C) or higher, a retarding admixture shall be used in the Class BS concrete and concrete bridge deck overlays. The proportions of the ingredients of the concrete shall be the same as without the retarding admixture, except that the amount of mixing water shall be reduced, as may be necessary, in order to maintain the consistency of the concrete as required. In addition, a high range water-reducing admixture shall be used in bridge deck concrete. At the option of the Contractor, a water-reducing admixture may be used with the high range water-reducing admixture in Class BS concrete.
- (2) At the Contractor's option, admixtures in addition to an air-entraining admixture may be used for Class PP-1 or RR concrete. When the air temperature is less than 55 °F (13 °C) and an accelerator is used, the non-chloride accelerator shall be calcium nitrite.
- (3) When Class C fly ash or ground granulated blast-furnace slag is used in Class PP-1 or RR concrete, a water-reducing or high range water-reducing admixture shall be used.
- (4) For Class PP-2 or PP-3 concrete, a non-chloride accelerator followed by a high range water-reducing admixture shall be used, in addition to the air-entraining admixture. The Contractor has the option to use a water-reducing admixture with the high range water-reducing admixture. For Class PP-3 concrete, the non-chloride accelerator shall be calcium nitrite. For Class PP-2 concrete, the non-chloride accelerator shall be calcium nitrite when the air temperature is less than 55 °F (13 °C).
- (5) For Class PP-4 concrete, a high range water-reducing admixture shall be used in addition to the air-entraining admixture. The Contractor has the option to use a water-reducing admixture with the high range water-reducing admixture. An accelerator shall not be used. For stationary or truck-mixed concrete, a retarding admixture shall be used to allow for haul time. The Contractor has the option to use

a mobile portland cement concrete plant, but a retarding admixture shall not be used unless approved by the Engineer.

For PP-5 concrete, a non-chloride accelerator, high range water-reducing admixture, and air-entraining admixture shall be used. The accelerator, high range water-reducing admixture, and air-entraining admixture shall be per the Contractor's recommendation and dosage. The approved list of concrete admixtures shall not apply. A mobile portland cement concrete plant shall be used to produce the patching mixture.

- (6) When a calcium chloride accelerator is specified in the contract, the maximum chloride dosage shall be 1.0 quart (1.0 L) of solution per 100 lb (45 kg) of cement. The dosage may be increased to a maximum 2.0 quarts (2.0 L) per 100 lb (45 kg) of cement if approved by the Engineer. When a calcium chloride accelerator for Class PP-2 concrete is specified in the contract, the maximum chloride dosage shall be 1.3 quarts (1.3 L) of solution per 100 lb (45 kg) of cement. The dosage may be increased to a maximum 2.6 quarts (2.6 L) per 100 lb (45 kg) of cement if approved by the Engineer.
- (7) For Class DS concrete a retarding admixture and a high range water-reducing admixture shall be used. For dry excavations that are 10 ft (3 m) or less, the high range water-reducing admixture may be replaced with a water-reducing admixture if the concrete is vibrated. The use of admixtures shall take into consideration the slump loss limits specified in Article 516.12 and the fluidity requirement in Article 1020.04 (Note 12).
- (8) At the Contractor's option, when a water-reducing admixture or a high range water-reducing admixture is used for Class PV, PP-1, RR, SC, and SI concrete, the cement factor may be reduced a maximum 0.30 hundredweight/cu yd (18 kg/cu m). However, a cement factor reduction will not be allowed for concrete placed underwater.
- (9) When Type F or Type G high range water-reducing admixtures are used, the initial slump shall be a minimum of 1 1/2 in. (40 mm) prior to addition of the Type F or Type G admixture, except as approved by the Engineer.
- (10) When specified, a corrosion inhibitor shall be added to the concrete mixture utilized in the manufacture of precast, prestressed concrete members and/or other applications. It shall be added, at the same rate, to all grout around post-tensioning steel when specified.

When calcium nitrite is used, it shall be added at the rate of 4 gal/cu yd (20 L/cu m), and shall be added to the mix immediately after all compatible admixtures have been introduced to the batch.

When Rheocrete 222+ is used, it shall be added at the rate of 1.0 gal/cu yd (5.0 L/cu m), and the batching sequence shall be according to the manufacturer's instructions.

- (c) Finely Divided Minerals. Use of finely divided minerals shall be according to the following.
 - (1) Fly Ash. At the Contractor's option, fly ash from approved sources may partially replace portland cement in cement aggregate mixture II, Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete.

The use of fly ash shall be according to the following.

- a. Measurements of fly ash and portland cement shall be rounded up to the nearest 5 lb (2.5 kg).
- b. When Class F fly ash is used in cement aggregate mixture II, Class PV, BS, PC, PS, DS, SC, and SI concrete, the amount of portland cement replaced shall not exceed 25 percent by weight (mass).
- c. When Class C fly ash is used in cement aggregate mixture II, Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete, the amount of portland cement replaced shall not exceed 30 percent by weight (mass).
- d. Fly ash may be used in concrete mixtures when the air temperature is below 40 °F (4 °C), but the Engineer may request a trial batch of the concrete mixture to show the mix design strength requirement will be met.
- (2) Ground Granulated Blast-Furnace (GGBF) Slag. At the Contractor's option, GGBF slag may partially replace portland cement in Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete. For Class PP-3 concrete, GGBF slag shall be used according to Article 1020.04.

The use of GGBF slag shall be according to the following.

- a. Measurements of GGBF slag and portland cement shall be rounded up to the nearest 5 lb (2.5 kg).
- b. When GGBF slag is used in Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC and SI concrete, the amount of portland cement replaced shall not exceed 35 percent by weight (mass).
- c. GGBF slag may be used in concrete mixtures when the air temperature is below 40 °F (4 °C), but the Engineer may request a trial batch of the concrete mixture to show the mix design strength requirement will be met.

(3) Microsilica. At the Contractor's option, microsilica may be added at a maximum of 5.0 percent by weight (mass) of the cement and finely divided minerals summed together.

Microsilica shall be used in Class PP-3 concrete according to Article 1020.04.

- (4) High Reactivity Metakaolin (HRM). At the Contractor's option, HRM may be added at a maximum of 5.0 percent by weight (mass) of the cement and finely divided minerals summed together.
- (5) Mixtures with Multiple Finely Divided Minerals. Except as specified for Class PP-3 concrete, the Contractor has the option to use more than one finely divided mineral in Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete as follows.
 - a. The mixture shall contain a maximum of two finely divided minerals. The finely divided mineral in portland-pozzolan cement or portland blast-furnace slag cement shall count toward the total number of finely divided minerals allowed. The finely divided minerals shall constitute a maximum of 35.0 percent of the total cement plus finely divided minerals. The fly ash portion shall not exceed 30.0 percent for Class C fly ash or 25.0 percent for Class F fly ash. The Class C and F fly ash combination shall not exceed 30.0 percent. The ground granulated blast-furnace slag portion shall not exceed 35.0 percent. The microsilica or high-reactivity metakaolin portion used together or separately shall not exceed ten percent. The finely divided mineral in the portland-pozzolan cement or portland blast-furnace slag blended cement shall apply to the maximum 35.0 percent.
 - b. Central Mixed. For Class PV, SC, and SI concrete, the mixture shall contain a minimum of 565 lbs/cu yd (335 kg/cu m) of cement and finely divided minerals summed together. If a water-reducing or high-range water-reducing admixture is used, the Contractor has the option to use a minimum of 535 lbs/cu yd (320 kg/cu m).
 - c. Truck-Mixed or Shrink-Mixed. For Class PV, SC, and SI concrete, the mixture shall contain a minimum of 605 lbs/cu yd (360 kg/cu m) of cement and finely divided minerals summed together. If a water-reducing or high-range water-reducing admixture is used, the Contractor has the option to use a minimum of 575 lbs/cu yd (345 kg/cu m).
 - d. Central-Mixed, Truck-Mixed or Shrink-Mixed. For Class PP-1 and RR concrete, the mixture shall contain a minimum of 650 lbs/cu yd (385 kg/cu m) of cement and finely divided minerals summed together. For Class PP-1 and RR concrete using Type III portland cement, the mixture shall contain a minimum of 620 lbs/cu yd (365 kg/cu m).

For Class PP-2 concrete, the mixture shall contain a minimum of 735 lbs/cu yd (435 kg/cu m) of cement and finely divided minerals summed together. For Class BS concrete, the mixture shall contain a minimum of 605 lbs/cu yd (360 kg/cu m). For Class DS concrete, the mixture shall contain a minimum of 665 lbs/cu yd (395 kg/cu m).

If a water-reducing or high range water-reducing admixture is used in Class PP-1 and RR concrete, the Contractor has the option to use a minimum of 620 lbs/cu yd (365 kg/cu m) of cement and finely divided minerals summed together. If a water-reducing or high-range water-reducing admixture is used with Type III portland cement in Class PP-1 and RR concrete, the Contractor has the option to use a minimum of 590 lbs/cu yd (350 kg/cu m).

- e. Central-Mixed or Truck-Mixed. For Class PC and PS concrete, the mixture shall contain a minimum of 565 lbs/cu yd (335 kg/cu m) of cement and finely divided minerals summed together.
- f. The mixture shall contain a maximum of 705 lbs/cu yd (418 kg/cu m) of cement and finely divided mineral(s) summed together for Class PV, BS, PC, PS, DS, SC, and SI concrete. For Class PP-1 and RR concrete, the mixture shall contain a maximum of 750 lbs/cu yd (445 kg/cu m). For Class PP-1 and RR concrete using Type III portland cement, the mixture shall contain a maximum of 720 lbs/cu yd (425 kg/cu m). For Class PP-2 concrete, the mixture shall contain a maximum of 820 lbs/cu yd (485 kg/cu m).
- g. For Class SC concrete and for any other class of concrete that is to be placed underwater, except Class DS concrete, the allowable cement and finely divided minerals summed together shall be increased by ten percent.
- h. The combination of cement and finely divided minerals shall comply with Article 1020.05(d).
- (d) Alkali-Silica Reaction. For cast-in-place (includes cement aggregate mixture II and latex mixtures), precast, and precast prestressed concrete, one of the mixture options provided in Article 1020.05(d)(2) shall be used to reduce the risk of a deleterious alkali-silica reaction in concrete exposed to humid or wet conditions. The mixture options are not intended or adequate for concrete exposed to potassium acetate, potassium formate, sodium acetate, or sodium formate. The mixture options will not be required for the dry environment (humidity less than 60 percent) found inside buildings for residential or commercial occupancy.

The mixture options shall not apply to concrete revetment mats, insertion lining of pipe culverts, portland cement mortar fairing course, controlled low-strength material, miscellaneous grouts that are not prepackaged, Class PP-3 concrete, Class PP-4 concrete, and Class PP-5 concrete.

(1) Aggregate Groups. Each combination of aggregates used in a mixture will be assigned to an aggregate group. The point at which the coarse aggregate and fine aggregate expansion values intersect in the following table will determine the group.

Aggregate Groups								
Coarse Aggregate or	Fine Aggregate Or							
Coarse Aggregate Blend	Fine Aggregate Blend							
	ASTM C 1260 Expansion							
ASTM C 1260 Expansion	≤0.16%	>0.16% - 0.27%	>0.27%					
≤0.16%	Group I	Group II	Group III					
>0.16% - 0.27%	Group II	Group II	Group III					
>0.27%	Group III Group III Group IV							

(2) Mixture Options. Based upon the aggregate group, the following mixture options shall be used. However, the Department may prohibit a mixture option if field performance shows a deleterious alkali-silica reaction or Department testing indicates the mixture may experience a deleterious alkali-silica reaction.

Re	Reduction of Risk for Deleterious Alkali-Silica Reaction									
Aggregate		N	lixture Optior	IS						
Groups	Option 1	Option 2	Option 3	Option 4	Option 5					
Group I	U	Mixture options are not applicable. Use any cement or finely divided mineral.								
Group II	х	х	х	х	х					
Group III	х	Combine Option 2 with Option 3	Combine Option 2 with Option 3	Х	х					
Group IV	х	Combine Option 2 with Option 4	Invalid Option	Combine Option 2 with Option 4	х					

"X" denotes valid mixture option for aggregate group.

a. Mixture Option 1. The coarse or fine aggregates shall be blended to place the material in a group that will allow the selected cement or finely divided mineral to be used. Coarse aggregate may only be blended with another coarse aggregate. Fine aggregate may only be blended with another fine aggregate. Blending of

coarse with fine aggregate to place the material in another group will not be permitted.

When a coarse or fine aggregate is blended, the weighted expansion value shall be calculated separately for the coarse and fine aggregate as follows:

Weighted Expansion Value = $(a/100 \times A) + (b/100 \times B) + (c/100 \times C) + \dots$

Where: a, b, c... = percentage of aggregate in the blend; A, B, C... = expansion value for that aggregate.

- b. Mixture Option 2. A finely divided mineral shall be used as described in 1), 2), 3), or 4) that follow. In addition, a blended cement with a finely divided mineral may be added to a separate finely divided mineral to meet the following requirements, provided the finely divided minerals are the same material. However, adding together two different finely divided minerals to obtain the specified minimum percentage of one material will not be permitted for 1), 2), 3), and 4). Refer to Mixture Option 5 to address this situation.
 - 1. Class F Fly Ash. For cement aggregate mixture II, Class PV, BS, PC, PS, MS, DS, SC and SI concrete, the Class F fly ash shall be a minimum 25.0 percent by weight (mass) of the cement and finely divided minerals summed together.

If the maximum total equivalent available alkali content (Na₂O + $0.658K_2O$) exceeds 4.50 percent for the Class F fly ash, it may be used only if it complies with Mixture Option 5.

 Class C Fly Ash. For cement aggregate mixture II, Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete, Class C fly ash shall be a minimum of 25.0 percent by weight (mass) of the cement and finely divided minerals summed together.

If the maximum total equivalent available alkali content (Na₂O + $0.658K_2O$) exceeds 4.50 percent or the calcium oxide exceeds 26.50 percent for the Class C fly ash, it may be used only per Mixture Option 5.

 Ground Granulated Blast-Furnace Slag. For Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete, ground granulated blast-furnace slag shall be a minimum of 25.0 percent by weight (mass) of the cement and finely divided minerals summed together.

If the maximum total equivalent available alkali content (Na₂O + $0.658K_2O$) exceeds 1.00 percent for the ground granulated blast-furnace slag, it may be used only per Mixture Option 5.

4. Microsilica or High Reactivity Metakaolin, Microsilica solids or high reactivity metakaolin shall be a minimum 5.0 percent by weight (mass) of the cement and finely divided minerals summed together.

If the maximum total equivalent available alkali content (Na₂O + $0.658K_2O$) exceeds 1.00 percent for the Microsilica or High Reactivity Metakaolin, it may be used only if it complies with Mixture Option 5.

- c. Mixture Option 3. The cement used shall have a maximum total equivalent alkali content (Na₂O + 0.658K₂O) of 0.60 percent. When aggregate in Group II is involved and the Contractor desires to use a finely divided mineral, any finely divided mineral may be used with the cement unless the maximum total equivalent available alkali content (Na₂O + 0.658K₂O) exceeds 4.50 percent for the fly ash; or 1.00 percent for the ground granulated blast-furnace slag, microsilica or high reactivity metakaolin. If the alkali content is exceeded, the finely divided mineral may be used only per Mixture Option 5.
- d. Mixture Option 4. The cement used shall have a maximum total equivalent alkali content (Na₂O + 0.658K₂O) of 0.45 percent. When aggregate in Group II or III is involved and the Contractor desires to use a finely divided mineral, any finely divided mineral may be used with the cement unless the maximum total equivalent available alkali content (Na₂O + 0.658K₂O) exceeds 4.50 percent for the fly ash; or 1.00 percent for the ground granulated blast-furnace slag, microsilica, or high reactivity metakaolin. If the alkali content is exceeded, the finely divided mineral may be used only per Mixture Option 5.
- e. Mixture Option 5. The proposed cement or finely divided mineral may be used if the ASTM C 1567 expansion value is ≤ 0.16 percent when performed on the aggregate in the concrete mixture with the highest ASTM C 1260 test result. The laboratory performing the ASTM C 1567 test shall be approved by the Department according to the current Bureau of Materials and Physical Research Policy Memorandum "Minimum Laboratory Requirements for Alkali-Silica Reactivity (ASR) Testing". The ASTM C 1567 test will be valid for two years, unless the Engineer determines the materials have changed significantly.

For latex concrete, the ASTM C 1567 test shall be performed without the latex.

The 0.20 percent autoclave expansion limit in ASTM C 1567 shall not apply.

If during the two year time period the Contractor needs to replace the cement, and the replacement cement has an equal or lower total equivalent alkali content $(Na_2O + 0.658K_2O)$, a new ASTM C 1567 test will not be required.

The Engineer reserved the right to verify a Contractor's ASTM C 1567 test result. When the Contractor performs the test, a split sample may be requested by the Engineer. The Engineer may also independently obtain a sample at any time. The proposed cement or finely divided mineral will not be allowed for use if the Contractor or Engineer obtains an expansion value greater than 0.16 percent.

1020.06 Water/Cement Ratio. The water/cement ratio shall be determined on a weight (mass) basis. When a maximum water/cement ratio is specified, the water shall include mixing water, water in admixtures, free moisture on the aggregates, and water added at the jobsite. The quantity of water may be adjusted within the limit specified to meet slump requirements.

When fly ash, ground granulated blast-furnace slag, high-reactivity metakaolin, or microsilica (silica fume) are used in a concrete mix, the water/cement ratio will be based on the total cement and finely divided minerals contained in the mixture.

1020.07 Slump. The slump shall be determined according to Illinois Modified AASHTO T 119.

If the measured slump falls outside the limits specified, a check test will be made. In the event of a second failure, the Engineer may refuse to permit the use of the batch of concrete represented.

If the Contractor is unable to add water to prepare concrete of the specified slump without exceeding the maximum design water/cement ratio, a water-reducing admixture shall be added.

1020.08 Air Content. The air content shall be determined according to Illinois Modified AASHTO T 152 or Illinois Modified AASHTO T 196. The air-entrainment shall be obtained by the use of cement with an approved air-entraining admixture added during the mixing of the concrete or the use of air-entraining cement.

If the air-entraining cement furnished is found to produce concrete having air content outside the limits specified, its use shall be discontinued immediately and the Contractor shall provide other air-entraining cement which will produce air contents within the specified limits.

If the air content obtained is above the specified maximum limit at the jobsite, the Contractor may have the concrete further mixed, within the limits of time and revolutions specified, to reduce the air content. If the air content obtained is below the specified minimum limit, the Contractor may add to the concrete a sufficient quantity of an approved air-entraining admixture at the jobsite to bring the air content within the specified limits.

1020.09 Strength Tests. The specimens shall be molded and cured according to Illinois Modified AASHTO T 23. Specimens shall be field cured with the construction item as specified in Illinois Modified AASHTO T 23. The compressive strength shall be determined according to Illinois Modified AASHTO T 22. The flexural strength shall be determined according to Illinois Modified AASHTO T 177.

Except for Class PC and PS concrete, the Contractor shall transport the strength specimens from the site of the work to the field laboratory or other location as instructed by the Engineer. During transportation in a suitable light truck, the specimens shall be embedded in straw,

burlap, or other acceptable material in a manner meeting with the approval of the Engineer to protect them from damage; care shall be taken to avoid impacts during hauling and handling. For strength specimens, the Contractor shall provide a field curing box for initial curing and a water storage tank for final curing. The field curing box will be required when an air temperature below 60 °F (16 °C) is expected during the initial curing period. The device shall maintain the initial curing temperature range specified in Illinois Modified AASHTO T 23, and may be insulated or power operated as appropriate.

1020.10 Handling, Measuring, and Batching Materials. Aggregates shall be handled in a manner to prevent mixing with soil and other foreign material.

Aggregates shall be handled in a manner which produces a uniform gradation, before placement in the plant bins. Aggregates delivered to the plant in a nonuniform gradation condition shall be stockpiled. The stockpiled aggregate shall be mixed uniformly before placement in the plant bins.

Aggregates shall have a uniform moisture content before placement in the plant bins. This may require aggregates to be stockpiled for 12 hours or more to allow drainage, or water added to the stockpile, or other methods approved by the Engineer. Moisture content requirements for crushed concrete, crushed slag or lightweight aggregate shall be according to Article 1004.01(e)(5).

Aggregates, cement, and finely divided minerals shall be measured by weight (mass). Water and admixtures shall be measured by volume or weight (mass).

The Engineer may permit aggregates, cement, and finely divided minerals to be measured by volume for small isolated structures and for miscellaneous items. Aggregates, cement, and finely divided minerals shall be measured individually. The volume shall be based upon dry, loose materials.

1020.11 Mixing Portland Cement Concrete. The mixing of concrete shall be according to the following.

- (a) Ready-Mixed Concrete. Ready-mixed concrete is central-mixed, truck-mixed, or shrinkmixed concrete transported and delivered in a plastic state ready for placement in the work and shall be according to the following.
 - (1) Central-Mixed Concrete. Central-mixed concrete is concrete which has been completely mixed in a stationary mixer and delivered in a truck agitator, a truck mixer operating at agitating speed, or a nonagitator truck.

The stationary mixer shall operate at the drum speed for which it was designed. The batch shall be charged into the drum so that some of the water shall enter in advance of the cement, finely divided minerals, and aggregates. The flow of the water shall be uniform and all water shall be in the drum by the end of the first 15 seconds of the mixing period. Water shall begin to enter the drum from zero to

two seconds in advance of solid material and shall stop flowing within two seconds of the beginning of mixing time.

Some coarse aggregate shall enter in advance of other solid materials. For the balance of the charging time for solid materials, the aggregates, finely divided minerals, and cement (to assure thorough blending) shall each flow at acceptably uniform rates, as determined by visual observation. Coarse aggregate shall enter two seconds in advance of other solid materials and a uniform rate of flow shall continue to within two seconds of the completion of charging time.

The entire contents of the drum, or of each single compartment of a multiple-drum mixer, shall be discharged before the succeeding batch is introduced.

The volume of concrete mixed per batch shall not exceed the mixer's rated capacity as shown on the standard rating plate on the mixer by more than ten percent.

The minimum mixing time shall be 75 seconds for a stationary mixer having a capacity greater than 2 cu yd (1.5 cu m). For a mixer with a capacity equal to or less than 2 cu yd (1.5 cu m) the mixing time shall be 60 seconds. Transfer time in multiple drum mixers is included in the mixing time. Mixing time shall begin when all materials are in the mixing compartment and shall end when the discharge of any part of the batch is started. The required mixing times will be established by the Engineer for all types of stationary mixers.

When central-mixed concrete is to be transported in a truck agitator or a truck mixer, the stationary-mixed batch shall be transferred to the agitating unit without delay and without loss of any portion of the batch. Agitating shall start immediately thereafter and shall continue without interruption until the batch is discharged from the agitator. The ingredients of the batch shall be completely discharged from the agitator before the succeeding batch is introduced. Drums and auxiliary parts of the equipment shall be kept free from accumulations of materials.

The vehicles used for transporting the mixed concrete shall be of such capacity, or the batches shall be so proportioned, that the entire contents of the mixer drum can be discharged into each vehicle load.

(2) Truck-Mixed Concrete. Truck-mixed concrete is completely mixed and delivered in a truck mixer. When the mixer is charged with fine and coarse aggregates simultaneously, not less than 60 nor more than 100 revolutions of the drum or blades at mixing speed shall be required, after all of the ingredients including water are in the drum. When fine and coarse aggregates are charged separately, not less than 70 revolutions will be required. For self-consolidating concrete, a minimum of 100 revolutions is required in all cases. Additional mixing beyond 100 revolutions shall be at agitating speed unless additions of water, admixtures, or other materials are made at the jobsite. The mixing operation shall begin immediately after the cement and water, or the cement and wet aggregates, come in contact. The

ingredients of the batch shall be completely discharged from the drum before the succeeding batch is introduced. The drum and auxiliary parts of the equipment shall be kept free from accumulations of materials. If additional water or an admixture is added at the jobsite, the concrete batch shall be mixed a minimum of 40 additional revolutions after each addition.

- (3) Shrink-Mixed Concrete. Shrink-mixed concrete is mixed partially in a stationary mixer and completed in a truck mixer for delivery. The mixing time of the stationary mixer may be reduced to a minimum of 30 seconds to intermingle the ingredients, before transferring to the truck mixer. All ingredients for the batch shall be in the stationary mixer and partially mixed before any of the mixture is discharged into the truck mixer. The partially mixed batch shall be transferred to the truck mixer without delay and without loss of any portion of the batch, and mixing in the truck mixer shall start immediately. The mixing time in the truck mixer shall be not less than 50 nor more than 100 revolutions of the drum or blades at mixing speed. For selfconsolidating concrete, a minimum of 100 revolutions is required in the truck mixer. Additional mixing beyond 100 revolutions shall be at agitating speed, unless additions of water, admixtures, or other materials are made at the jobsite. Units designed as agitators shall not be used for shrink mixing. The ingredients of the batch shall be completely discharged from the drum before the succeeding batch is introduced. The drum and auxiliary parts of the equipment shall be kept free from accumulations of materials. If additional water or an admixture is added at the jobsite, the concrete batch shall be mixed a minimum of 40 additional revolutions after each addition.
- (4) Mixing Water. Wash water shall be completely discharged from the drum or container before a batch is introduced. All mixing water shall be added at the plant and any adjustment of water at the jobsite by the Contractor shall not exceed the specified maximum water/cement ratio or slump. If strength specimens have been made for a batch of concrete, and subsequently during discharge there is more water added, additional strength specimens shall be made for the batch of concrete. No additional water may be added at the jobsite to central-mixed concrete if the mix design has less than 565 lbs/cu yd (335 kg/cu m) of cement and finely divided minerals summed together.
- (5) Mixing and Agitating Speeds. The mixing or agitating speeds used for truck mixers or truck agitators shall be per the manufacturer's rating plate.
- (6) Capacities. The volume of plastic concrete in a given batch will be determined according to AASHTO T 121, based on the total weight (mass) of the batch, determined either from the weight (masses) of all materials, including water, entering the batch or directly from the net weight (mass) of the concrete in the batch as delivered.

The volume of mixed concrete in truck mixers or truck agitators shall in no case be greater than the rated capacity determined according to the Truck Mixer, Agitator,

and Front Discharge Concrete Carrier Standards of the Truck Mixer Manufacturer's Bureau, as shown by the rating plate attached to the truck. If the truck mixer does not have a rating plate, the volume of mixed concrete shall not exceed 63 percent of the gross volume of the drum or container, disregarding the blades. For truck agitators, the value is 80 percent.

(7) Time of Haul. Haul time shall begin when the delivery ticket is stamped. The delivery ticket shall be stamped no later than five minutes after the addition of the mixing water to the cement, or after the addition of the cement to the aggregate when the combined aggregates contain free moisture in excess of two percent by weight (mass). If more than one batch is required for charging a truck using a stationary mixer, the time of haul shall start with mixing of the first batch. Haul time shall end when the truck is emptied for incorporation of the concrete into the work.

The time elapsing from when water is added to the mix until it is deposited in place at the site of the work shall not exceed 30 minutes when the concrete is transported in nonagitating trucks.

The maximum haul time for concrete transported in truck mixers or truck agitators shall be according to the following.

Concrete Temperature at Point	Haul Time			
of Discharge °F (°C)	Hours	Minutes		
50-64 (10-17.5)	1	30		
>64 (>17.5) - without retarder	1	0		
>64 (>17.5) - with retarder	1	30		

To encourage start-up testing for mix adjustments at the plant, the first two trucks will be allowed an additional 15 minutes haul time whenever such testing is performed.

For a mixture which is not mixed on the jobsite, a delivery ticket shall be required for each load. The following information shall be recorded on each delivery ticket: (1) ticket number; (2) name of producer and plant location; (3) contract number; (4) name of Contractor; (5) stamped date and time batched; (6) truck number; (7) quantity batched; (8) amount of admixture(s) in the batch; (9) amount of water in the batch; and (10) Department mix design number.

For concrete mixed in jobsite stationary mixers, the above delivery ticket may be waived, but a method of verifying the haul time shall be established to the satisfaction of the Engineer.

(8) Production and Delivery. The production of ready-mixed concrete shall be such that the operations of placing and finishing will be continuous insofar as the job operations require. The Contractor shall be responsible for producing concrete that will have the required workability, consistency, and plasticity when delivered to the work. Concrete which is unsuitable for placement as delivered will be rejected. The Contractor shall minimize the need to adjust the mixture at the jobsite, such as adding water and admixtures prior to discharging.

- (9) Use of Multiple Plants in the Same Construction Item. The Contractor may simultaneously use central-mixed, truck-mixed, and shrink-mixed concrete from more than one plant, for the same construction item, on the same day, and in the same pour. However, the following criteria shall be met.
 - a. Each plant shall use the same cement, finely divided minerals, aggregates, admixtures, and fibers.
 - b. Each plant shall use the same mix design. However, material proportions may be altered slightly in the field to meet slump and air content criteria. Field water adjustments shall not result in a difference that exceeds 0.02 between plants for water/cement ratio. The required cement factor for central-mixed concrete shall be increased to match truck-mixed or shrink-mixed concrete, if the latter two types of mixed concrete are used in the same pour.
 - c. The maximum slump difference between deliveries of concrete shall be 3/4 in. (19 mm) when tested at the jobsite. If the difference is exceeded, but test results are within specification limits, the concrete may be used. The Contractor shall take immediate corrective action and shall test subsequent deliveries of concrete until the slump difference is corrected. For each day, the first three truck loads of delivered concrete from each plant shall be tested for slump by the Contractor. Thereafter, when a specified test frequency for slump is to be performed, it shall be conducted for each plant at the same time.
 - d. The maximum air content difference between deliveries of concrete shall be 1.5 percent when tested at the jobsite. If the difference is exceeded, but test results are within specification limits, the concrete may be used. The Contractor shall take immediate corrective action and shall test subsequent deliveries of concrete until the air content difference is corrected. For each day, the first three truck loads of delivered concrete from each plant shall be tested for air content by the Contractor. Thereafter, when a specified test frequency for air content is to be performed, it shall be conducted for each plant at the same time.
 - e. Strength tests shall be performed and taken at the jobsite for each plant. When a specified strength test is to be performed, it shall be conducted for each plant at the same time. The difference between plants for strength shall not exceed 900 psi (6200 kPa) compressive and 90 psi (620 kPa) flexural. If the strength difference requirements are exceeded, the Contractor shall take corrective action.
 - f. The maximum haul time difference between deliveries of concrete shall be 15 minutes. If the difference is exceeded, but haul time is within specification

limits, the concrete may be used. The Contractor shall take immediate corrective action and check subsequent deliveries of concrete.

- (b) Class PC Concrete. The concrete shall be central-mixed or truck-mixed. Variations in plastic concrete properties shall be minimized between batches.
- (c) Class PV Concrete. The concrete shall be central-mixed, truck-mixed, or shrink-mixed.

The required mixing time for stationary mixers with a capacity greater than 2 cu yd (1.5 cu m) may be less than 75 seconds upon satisfactory completion of a mixer performance test. Mixer performance tests may be requested by the Contractor when the quantity of concrete to be placed exceeds 50,000 sq yd (42,000 sq m). The testing shall be conducted according to the current Bureau of Materials and Physical Research's Policy Memorandum, "Field Test Procedures for Mixer Performance and Concrete Uniformity Tests".

The Contractor will be allowed to test two mixing times within a range of 50 to 75 seconds. If satisfactory results are not obtained from the required tests, the mixing time shall continue to be 75 seconds for the remainder of the contract. If satisfactory results are obtained, the mixing time may be reduced. In no event will mixing time be less than 50 seconds.

The Contractor shall furnish the labor, equipment, and material required to perform the testing according to the current Bureau of Materials and Physical Research's Policy Memorandum, "Field Test Procedures for Mixer Performance and Concrete Uniformity Tests".

A contract which has 12 ft (3.6 m) wide pavement or base course, and a continuous length of 1/2 mile (0.8 km) or more, shall have the following additional requirements.

- (1) The plant and truck delivery operation shall be able to provide a minimum of 50 cu yd (38 cu m) of concrete per hour.
- (2) The plant shall have automatic or semi-automatic batching equipment.
- (d) All Other Classes of Concrete. The concrete shall be central-mixed, truck-mixed, or shrink-mixed concrete.

1020.12 Mobile Portland Cement Concrete Plants. The use of a mobile portland cement concrete plant may be approved under the provisions of Article 1020.10 for volumetric proportioning in small isolated structures, thin overlays, and for miscellaneous and incidental concrete items.

The first 1 cu ft (0.03 cu m) of concrete produced may not contain sufficient mortar and shall not be incorporated in the work. The side plate on the cement feeder shall be removed

periodically (normally the first time the mixer is used each day) to see if cement is building up on the feed drum.

Sufficient mixing capacity of mixers shall be provided to enable continuous placing and finishing insofar as the job operations and the specifications require.

Slump and air tests made immediately after discharge of the mix may be misleading, since the aggregates may absorb a significant amount of water for four or five minutes after mixing.

1020.13 Curing and Protection. The method of curing, curing period, and method of protection for each type of concrete construction is included in the following Index Table.

INDEX TABLE OF C	URING AND PROTECTION O		
TYPE OF CONSTRUCTION	CURING METHODS	CURING PERIOD	LOW AIR TEMPERATURE
	METHODS	DAYS	PROTECTION METHODS
Cast-in-Place Concrete 11/		Bitto	
Pavement			
Shoulder	1020.13(a)(1)(2)(3)(4)(5) 3/5/	3	1020.13(c)
Base Course	2/		
Base Course Widening	1020.13(a)(1)(2)(3)(4)(5) 2/	3	1020.13(c)
Driveway Median			
Barrier			
Curb			
Gutter	1020.13(a)(1)(2)(3)(4)(5) 4/5/	3	1020.13(c) ^{16/}
Curb & Gutter			
Sidewalk			
Slope Wall			
Paved Ditch Catch Basin			
Manhole	1020.13(a)(1)(2)(3)(4)(5) 4/	3	1020.13(c)
Inlet	1020.10(0)(1)(2)(0)(4)(0)	Ū	1020.10(0)
Valve Vault			
Pavement Patching	1020.13(a)(1)(2)(3)(4)(5) 2/	3 ^{12/}	1020.13(c)
Bridge Deck Patching	1020.13(a)(3)(5)	3 or 7 ^{12/}	1020.13(c)
Railroad Crossing	1020.13(a)(3)(5)	1	1020.13(c)
Piles and Drilled Shafts	1020.13(a)(3)(5)	7	1020.13(d)(1)(2)(3)
Foundations & Footings	1020 12(a)(1)(2)(2)(4)(5) ^{4/6/}	_	
Seal Coat	1020.13(a)(1)(2)(3)(4)(3)	7	1020.13(d)(1)(2)(3)
Substructure	1020.13(a)(1)(2)(3)(4)(3)	7	1020.13(d)(1)(2)(3)
Superstructure (except deck)	1020.13(a)(1)(2)(3)(5) ^{8/}	7	1020.13(d)(1)(2)
Deck			
Bridge Approach Slab	1020.13(a)(5)	7	1020.13(d)(1)(2) ^{17/}
Retaining Walls	1020.13(a)(1)(2)(3)(4)(5) 1/7/	7	1020.13(d)(1)(2)
Pump Houses	1020.13(a)(1)(2)(3)(4)(5) 1/	7	1020.13(d)(1)(2)
Culverts	1020.13(a)(1)(2)(3)(4)(5) 4/6/	7	1020.13(d)(1)(2) ^{18/}
Other Incidental Concrete	1020.13(a)(1)(2)(3)(5)	3	1020.13(c)
Precast Concrete 11/			
Bridge Slabs	2/10/	10/	
Piles and Pile Caps	1020.13(a)(3)(5) ^{9/10/}	_ As ^{13/}	9/
Other Structural Members		Required	
All Other Precast Items	1020.13(a)(3)(4)(5) ^{2/9/10/}	As ^{14/}	9/
		Required	
Precast, Prestressed Concrete 11/			
All Items	1020(a)(3)(5) ^{9/ 10/}	Until Strand Tensioning is	9/
		Released ^{15/}	51

Notes-General:

- 1/ Type I, membrane curing only
- 2/ Type II, membrane curing only
- 3/ Type III, membrane curing only

- 4/ Type I, II and III membrane curing
- 5/ Membrane Curing will not be permitted between November 1 and April 15.
- 6/ The use of water to inundate foundations and footings, seal coats or the bottom slab of culverts is permissible when approved by the Engineer, provided the water temperature can be maintained at 45 °F (7 °C) or higher.
- 7/ Asphalt emulsion for waterproofing may be used in lieu of other curing methods when specified and permitted according to Article 503.18. The top surfaces of abutments and piers shall be cured according to Article 1020.13(a)(3) or (5).
- 8/ On non-traffic surfaces which receive protective coat according to Article 503.19, a linseed oil emulsion curing compound may be used as a substitute for protective coat and other curing methods. The linseed oil emulsion curing compound will be permitted between April 16 and October 31 of the same year, provided it is applied with a mechanical sprayer according to Article 1101.09(b).
- 9/ Steam, supplemental heat, or insulated blankets (with or without steam/supplemental heat) are acceptable and shall be according to the Bureau of Materials and Physical Research's Policy Memorandum "Quality Control/Quality Assurance Program for Precast Concrete Products" and the "Manual for Fabrication of Precast, Prestressed Concrete Products".
- 10/ A moist room according to AASHTO M 201 is acceptable for curing.
- 11/ If curing is required and interrupted because of form removal for cast-in-place concrete items, precast concrete products, or precast prestressed concrete products, the curing shall be resumed within two hours from the start of the form removal.
- 12/ Curing maintained only until opening strength is attained for pavement patching, with a maximum curing period of three days. For bridge deck patching the curing period shall be three days if Class PP concrete is used and 7 days if Class BS concrete is used.
- 13/ The curing period shall end when the concrete has attained the mix design strength. The producer has the option to discontinue curing when the concrete has attained 80 percent of the mix design strength or after seven days. All strength test specimens shall remain with the units and shall be subjected to the same curing method and environmental condition as the units, until the time of testing.
- 14/ The producer shall determine the curing period or may elect to not cure the product. All strength test specimens shall remain with the units and shall be subjected to the same curing method and environmental condition as the units, until the time of testing.

- 15/ The producer has the option to continue curing after strand release.
- 16/ When structural steel or structural concrete is in place above slope wall, Article 1020.13(c) shall not apply. The protection method shall be according to Article 1020.13(d)(1).
- 17/ When Article 1020.13(d)(2) is used to protect the deck, the housing may enclose only the bottom and sides. The top surface shall be protected according to Article 1020.13(d)(1).
- 18/ For culverts having a waterway opening of 10 sq ft (1 sq m) or less, the culverts may be protected according to Article 1020.13(d)(3).
- (a) Methods of Curing. Except as provided for in the Index Table of Curing and Protection of Concrete Construction, curing shall be accomplished by one of the following described methods. When water is required to wet the surface, it shall be applied as a fine spray so that it will not mar or pond on the surface. Except where otherwise specified, the curing period shall be at least 72 hours.
 - (1) Waterproof Paper Method. The surface of the concrete shall be covered with waterproof paper as soon as the concrete has hardened sufficiently to prevent marring the surface. The surface of the concrete shall be wetted immediately before the paper is placed. The blankets shall be lapped at least 12 in. (300 mm) end to end, and these laps shall be securely weighted with a windrow of earth, or other approved method, to form a closed joint. The same requirements shall apply to the longitudinal laps where separate strips are used for curing edges, except the lap shall be at least 9 in. (225 mm). The edges of the blanket shall be weighted securely with a continuous windrow of earth or any other means satisfactory to the Engineer to provide an air-tight cover. Any torn places or holes in the paper shall be repaired immediately by patches cemented over the openings, using a bituminous cement having a melting point of not less than 180 °F (82 °C). The blankets may be reused, provided they are air-tight and kept serviceable by proper repairs.

A longitudinal pleat shall be provided in the blanket to permit shrinkage where the width of the blanket is sufficient to cover the entire surface. The pleat will not be required where separate strips are used for the edges. Joints in the blanket shall be sewn or cemented together in such a manner that they will not separate during use.

(2) Polyethylene Sheeting Method. The surface of the concrete shall be covered with white polyethylene sheeting as soon as the concrete has hardened sufficiently to prevent marring the surface. The surface of the concrete shall be wetted immediately before the sheeting is placed. The edges of the sheeting shall be weighted securely with a continuous windrow of earth or any other means satisfactory to the Engineer to provide an air-tight cover. Adjoining sheets shall overlap not less than 12 in. (300 mm) and the laps shall be securely weighted with earth, or any other means satisfactory to the Engineer, to provide an air tight cover. For surface and base course concrete, the polyethylene sheets shall be not less than 100 ft (30 m) in length nor longer than can be conveniently handled, and shall be of such width that, when in place, they will cover the full width of the surface, including the edges, except that separate strips may be used to cover the edges. Any tears or holes in the sheeting shall be repaired. When sheets are no longer serviceable as a single unit, the Contractor may select from such sheets and reuse those which will serve for further applications, provided two sheets are used as a single unit; however, the double sheet units will be rejected when the Engineer deems that they no longer provide an air tight cover.

(3) Wetted Burlap Method. The surface of the concrete shall be covered with wetted burlap blankets as soon as the concrete has hardened sufficiently to prevent marring the surface. The blankets shall overlap 6 in. (150 mm). At least two layers of wetted burlap shall be placed on the finished surface. The burlap shall be kept saturated by means of a mechanically operated sprinkling system. In place of the sprinkling system, at the Contractor's option, two layers of burlap covered with impermeable covering shall be used. The burlap shall be kept saturated with water. Plastic coated burlap may be substituted for one layer of burlap and impermeable covering.

The blankets shall be placed so that they are in contact with the edges of the concrete, and that portion of the material in contact with the edges shall be kept saturated with water.

(4) Membrane Curing Method. Membrane curing will not be permitted where a protective coat, concrete sealer, or waterproofing is to be applied, or at areas where rubbing or a normal finish is required, or at construction joints other than those necessary in pavement or base course. Concrete at these locations shall be cured by another method specified in Article 1020.13(a).

After all finishing work to the concrete surface has been completed, it shall be sealed with membrane curing compound of the type specified within ten minutes. The seal shall be maintained for the specified curing period. The edges of the concrete shall, likewise, be sealed within ten minutes after the forms are removed. Two separate applications, applied at least one minute apart, each at the rate of not less than 1 gal/250 sq ft (0.16 L/sq m) will be required upon the surfaces and edges of the concrete. These applications shall be made with the mechanical equipment specified. Type III compound shall be agitated immediately before and during the application.

At locations where the coating is discontinuous or where pin holes show or where the coating is damaged due to any cause and on areas adjacent to sawed joints, immediately after sawing is completed, an additional coating of membrane curing compound shall be applied at the above specified rate. The equipment used may be of the same type as that used for coating variable widths of pavement. Before the additional coating is applied adjacent to sawed joints, the cut faces of the joint shall

be protected by inserting a suitable flexible material in the joint, or placing an adhesive width of impermeable material over the joint, or by placing the permanent sealing compound in the joint. Material, other than the permanent sealing compound, used to protect cut faces of the joint, shall remain in place for the duration of the curing period. In lieu of applying the additional coating, the area of the sawed joint may be cured according to any other method permitted.

When rain occurs before an application of membrane curing compound has dried, and the coating is damaged, the Engineer may require another application be made in the same manner and at the same rate as the original coat. The Engineer may order curing by another method specified, if unsatisfactory results are obtained with membrane curing compound.

(5) Wetted Cotton Mat Method. After the surface of concrete has been textured or finished, it shall be covered immediately with dry or damp cotton mats. The cotton mats shall be placed in a manner which will not mar the concrete surface. A texture resulting from the cotton mat material is acceptable. The cotton mats shall then be wetted immediately and thoroughly soaked with a gentle spray of water. For bridge decks, a foot bridge shall be used to place and wet the cotton mats.

The cotton mats shall be maintained in a wetted condition until the concrete has hardened sufficiently to place soaker hoses without marring the concrete surface. The soaker hoses shall be placed on top of the cotton mats at a maximum 4 ft (1.2 m) spacing. The cotton mats shall be kept wet with a continuous supply of water for the remainder of the curing period. Other continuous wetting systems may be used if approved by the Engineer.

After placement of the soaker hoses, the cotton mats shall be covered with white polyethylene sheeting or burlap-polyethylene blankets.

For construction items other than bridge decks, soaker hoses or a continuous wetting system will not be required if the alternative method keeps the cotton mats wet. Periodic wetting of the cotton mats is acceptable.

For areas inaccessible to the cotton mats on bridge decks, curing shall be according to Article 1020.13(a)(3).

(b) Removing and Replacing Curing Covering. When curing methods specified above in Article 1020.13(a), (1), (2), or (3) are used for concrete pavement, the curing covering for each day's paving shall be removed to permit testing of the pavement surface with a profilograph or straightedge, as directed by the Engineer.

Immediately after testing, the surface of the pavement shall be wetted thoroughly and the curing coverings replaced. The top surface and the edges of the concrete shall not be left unprotected for a period of more than 1/2 hour.

(c) Protection of Concrete, Other Than Structures, From Low Air Temperatures. When the official National Weather Service forecast for the construction area predicts a low of 32 °F (0 °C), or lower, or if the actual temperature drops to 32 °F (0 °C), or lower, concrete less than 72 hours old shall be provided at least the following protection.

Minimum Temperature	Protection
25 – 32 °F (-4 – 0 °C)	Two layers of polyethylene sheeting, one layer of polyethylene and one layer of burlap, or two layers of waterproof paper.
Below 25 °F (-4 °C)	6 in. (150 mm) of straw covered with one layer of polyethylene sheeting or waterproof paper.

These protective covers shall remain in place until the concrete is at least 96 hours old. When straw is required on pavement cured with membrane curing compound, the compound shall be covered with a layer of burlap, polyethylene sheeting or waterproof paper before the straw is applied.

After September 15, there shall be available to the work within four hours, sufficient clean, dry straw to cover at least two days production. Additional straw shall be provided as needed to afford the protection required. Regardless of the precautions taken, the Contractor shall be responsible for protection of the concrete placed and any concrete damaged by cold temperatures shall be removed and replaced.

(d) Protection of Concrete Structures From Low Air Temperatures. When the official National Weather Service forecast for the construction area predicts a low below 45 °F (7 °C), or if the actual temperature drops below 45 °F (7 °C), concrete less than 72 hours old shall be provided protection. Concrete shall also be provided protection when placed during the winter period of December 1 through March 15. Concrete shall not be placed until the materials, facilities, and equipment for protection are approved by the Engineer.

When directed by the Engineer, the Contractor may be required to place concrete during the winter period. When winter construction is specified, the Contractor shall proceed with the construction, including excavation, pile driving, concrete, steel erection, and all appurtenant work required for the complete construction of the item, except at times when weather conditions make such operations impracticable.

Regardless of the precautions taken, the Contractor shall be responsible for protection of the concrete placed and any concrete damaged by cold temperatures shall be removed and replaced.

(1) Protection Method I. The concrete shall be completely covered with insulating material such as fiberglass, rock wool, or other approved commercial insulating material having the minimum thermal resistance R, as defined in ASTM C 168, for

Minimum Pour Dimension in. (mm)		Thermal Resistance R
6 or less	(150 or less)	R=16
> 6 to 12	(> 150 to 300)	R=10
> 12 to 18	(> 300 to 450)	R=6
> 18	(> 450)	R=4

the corresponding minimum dimension of the concrete unit being protected as shown in the following table.

The insulating material manufacturer shall clearly mark the insulating material with the thermal resistance R value.

The insulating material shall be completely enclosed on sides and edges with an approved waterproof liner and shall be maintained in a serviceable condition. Any tears in the liner shall be repaired in a manner approved by the Engineer. The Contractor shall provide means for checking the temperature of the surface of the concrete during the protection period.

On formed surfaces, the insulating material shall be attached to the outside of the forms with wood cleats or other suitable means to prevent any circulation of air under the insulation and shall be in place before the concrete is placed. The blanket insulation shall be applied tightly against the forms. The edges and ends shall be attached so as to exclude air and moisture. If the blankets are provided with nailing flanges, the flanges shall be attached to the studs with cleats. Where tie rods or reinforcement bars protrude, the areas adjacent to the rods or bars shall be adequately protected in a manner satisfactory to the Engineer. Where practicable, the insulation shall overlap any previously placed concrete by at least 1 ft (300 mm). Insulation on the underside of floors on steel members shall cover the top flanges of supporting members. On horizontal surfaces, the insulating material shall be placed as soon as the concrete has set, so that the surface will not be marred and shall be covered with canvas or other waterproof covering. The insulating material shall be remain in place for a period of seven days after the concrete is placed.

The Contractor may remove the forms, providing the temperature is 35 $^{\circ}$ F (2 $^{\circ}$ C) and rising and the Contractor is able to wrap the particular section within two hours from the time of the start of the form removal. The insulation shall remain in place for the remainder of the seven days curing period.

(2) Protection Method II. The concrete shall be enclosed in adequate housing and the air surrounding the concrete kept at a temperature of not less than 50 °F (10 °C) nor more than 80 °F (27 °C) for a period of seven days after the concrete is placed. The Contractor shall provide means for checking the temperature of the surface of the concrete or air temperature within the housing during the protection period. All exposed surfaces within the housing shall be cured according to the Index Table.

The Contractor shall provide adequate fire protection where heating is in progress and such protection shall be accessible at all times. The Contractor shall maintain labor to keep the heating equipment in continuous operation.

At the close of the heating period, the temperature shall be decreased to the approximate temperature of the outside air at a rate not to exceed 15 °F (8 °C) per 12 hour period, after which the housing maybe removed. The surface of the concrete shall be permitted to dry during the cooling period.

(3) Protection Method III. As soon as the surface is sufficiently set to prevent marring, the concrete shall be covered with 12 in. (300 mm) of loose, dry straw followed by a layer of impermeable covering. The edges of the covering shall be sealed to prevent circulation of air and prevent the cover from flapping or blowing. The protection shall remain in place until the concrete is seven days old. If construction operations require removal, the protection removed shall be replaced immediately after completion or suspension of such operations.

1020.14 Temperature Control for Placement. Temperature control for concrete placement shall be according to the following.

(a) Concrete other than Structures. Concrete may be placed when the air temperature is above 35 °F (2 °C) and rising, and concrete placement shall stop when the falling temperature reaches 40 °F (4 °C) or below, unless otherwise approved by the Engineer.

The temperature of concrete immediately before placement shall be a minimum of 50 $^{\circ}$ F (10 $^{\circ}$ C) and a maximum of 90 $^{\circ}$ F (32 $^{\circ}$ C). If concrete is pumped, the temperature of the concrete at point of placement shall be a minimum of 50 $^{\circ}$ F (10 $^{\circ}$ C) and a maximum of 90 $^{\circ}$ F (32 $^{\circ}$ C). A maximum concrete temperature shall not apply to Class PP concrete.

(b) Concrete in Structures. Concrete may be placed when the air temperature is above 40 °F (4 °C) and rising, and concrete placement shall stop when the falling temperature reaches 45 °F (7 °C) or below, unless otherwise approved by the Engineer.

The temperature of the concrete immediately before placement shall be a minimum of 50 °F (10 °C) and a maximum of 90 °F (32 °C). If concrete is pumped, the temperature of the concrete at point of placement shall be a minimum of 50 °F (10 °C) and a maximum of 90 °F (32 °C).

When insulated forms are used according to Article 1020.13(d)(1), the maximum temperature of the concrete mixture immediately before placement shall be 80 °F (25 °C).

When concrete is placed in contact with previously placed concrete, the temperature of the freshly mixed concrete may be increased to 80 °F (25 °C) by the Contractor to offset anticipated heat loss.

- (c) All Classes of Concrete. Aggregates and water shall be heated or cooled uniformly and as necessary to produce concrete within the specified temperature limits. No frozen aggregates shall be used in the concrete.
- (d) Temperature. The concrete temperature shall be determined according to Illinois Modified AASHTO T 309.

1020.15 Heat of Hydration Control for Concrete Structures. The Contractor shall control the heat of hydration for concrete structures when the least dimension for a drilled shaft, foundation, footing, substructure, or superstructure concrete pour exceeds 5.0 ft (1.5 m). The work shall be according to the following.

- (a) Temperature Restrictions. The maximum temperature of the concrete after placement shall not exceed 150 °F (66 °C). The maximum temperature differential between the internal concrete core and concrete 2 to 3 in. (50 to 75 mm) from the exposed surface shall not exceed 35 °F (19 °C). The Contractor shall perform temperature monitoring to ensure compliance with the temperature restrictions.
- (b) Thermal Control Plan. The Contractor shall provide a thermal control plan a minimum of 28 calendar days prior to concrete placement for review by the Engineer. Acceptance of the thermal control plan by the Engineer shall not preclude the Contractor from specification compliance, and from preventing cracks in the concrete. At a minimum, the thermal control plan shall provide detailed information on the following requested items and shall comply with the specific specifications indicated for each item.
 - (1) Concrete mix design(s) to be used. Grout mix design if post-cooling with embedded pipe.

The mix design requirements in Articles 1020.04 and 1020.05 shall be revised to include the following additional requirements to control the heat of hydration.

- a. The concrete mixture should be uniformly graded and preference for larger size aggregate should be used in the mix design. Article 1004.02(d)(2) shall apply and information in the "Portland Cement Concrete Level III Technician Course Manual of Instructions for Design of Concrete Mixtures" may be used to develop the uniformly graded mixture.
- b. The following shall apply to all concrete except Class DS concrete or when self-consolidating concrete is desired. For central-mixed concrete, the Contractor shall have the option to develop a mixture with a minimum of 520 lbs/cu yd (309 kg/cu m) of cement and finely divided minerals summed together. For truck-mixed or shrink-mixed concrete, the Contractor shall have the option to develop a mixture with a minimum of 550 lbs/cu yd (326 kg/cu m) of cement and finely divided minerals summed together. For truck-mixed minerals summed together. A water-reducing or high range water-reducing admixture shall be used in the central mixed, truck-mixed or shrink-mixed

mixed concrete mixture. For any mixture to be placed underwater, the minimum cement and finely divided minerals shall be 550 lbs/cu yd (326 kg/cu m) for central-mixed concrete, and 580 lbs/cu yd (344 kg/cu m) for truck-mixed or shrink-mixed concrete.

For Class DS concrete, CA 11 may be used. If CA 11 is used, the Contractor shall have the option to develop a mixture with a minimum cement and finely divided minerals of 605 lbs/cu yd (360 kg/cu m) summed together. If CA 11 is used and either Class DS concrete is placed underwater or a self-consolidating concrete mixture is desired, the Contractor shall have the option to develop a mixture with a minimum cement and finely divided minerals of 635 lbs/cu yd (378 kg/cu m) summed together.

- c. The minimum portland cement content in the mixture shall be 375 lbs/cu yd (222 kg/cu m). When the total of organic processing additions, inorganic processing additions, and limestone addition exceed 5.0 percent in the cement, the minimum portland cement content in the mixture shall be 400 lbs/cu yd (237 kg/cu m). For a drilled shaft, foundation, footing, or substructure, the minimum portland cement may be reduced to as low as 330 lbs/cu yd (196 kg/cu m) if the concrete has adequate freeze/thaw durability. The Contractor shall provide freeze/thaw test results according to AASHTO T 161 Procedure A or B, and the relative dynamic modulus of elasticity of the mix design shall be a minimum of 80 percent. Freeze/thaw testing will not be required for concrete that will not be exposed to freezing and thawing conditions as determined by the Engineer.
- d. The maximum cement replacement with fly ash shall be 40.0 percent. The maximum cement replacement with ground granulated blast-furnace slag shall be 65.0 percent. When cement replacement with ground granulated blast-furnace slag exceeds 35.0 percent, only Grade 100 shall be used.
- e. The mixture may contain a maximum of two finely divided minerals. The finely divided mineral in portland-pozzolan cement or portland blast-furnace slag cement shall count toward the total number of finely divided minerals allowed. The finely divided minerals shall constitute a maximum of 65.0 percent of the total cement plus finely divided minerals. The fly ash portion shall not exceed 40.0 percent. The ground granulated blast-furnace slag portion shall not exceed 65.0 percent. The microsilica or high-reactivity metakaolin portion used together or separately shall not exceed 5.0 percent.
- f. The time to obtain the specified strength may be increased to a maximum 56 days, provided the curing period specified in Article 1020.13 is increased to a minimum of 14 days.

The minimum grout strength for filling embedded pipe shall be as specified for the concrete, and testing shall be according to AASHTO T 106.

(2) The selected mathematical method for evaluating heat of hydration thermal effects, which shall include the calculated adiabatic temperature rise, calculated maximum concrete temperature, and calculated maximum temperature differential between the internal concrete core and concrete 2 to 3 in. (50 to 75 mm) from the exposed surface. The time when the maximum concrete temperature and maximum temperature differential will occur is required.

Acceptable mathematical methods include ACI 207.2R "Report on Thermal and Volume Change Effects on Cracking of Mass Concrete" as well as other proprietary methods. The Contractor shall perform heat of hydration testing on the cement and finely divided minerals to be used in the concrete mixture. The test shall be according to ASTM C 186 or other applicable test methods, and the result for heat shall be used in the equation to calculate adiabatic temperature rise. Other required test parameters for the mathematical model may be assumed if appropriate.

The Contractor has the option to propose a higher maximum temperature differential between the internal concrete core and concrete 2 to 3 in. (50 to 75 mm) from the exposed surface, but the proposed value shall not exceed 50 °F (28 °C). In addition, based on strength gain of the concrete, multiple maximum temperature differentials at different times may be proposed. The proposed value shall be justified through a mathematical method.

(3) Proposed maximum concrete temperature or temperature range prior to placement.

Article 1020.14 shall apply except a minimum 40 °F (4 °C) concrete temperature will be permitted.

(4) Pre-cooling, post-cooling, and surface insulation methods that will be used to ensure the concrete will comply with the specified maximum temperature and specified or proposed temperature differential. For reinforcement that extends beyond the limits of the pour, the Contractor shall indicate if the reinforcement is required to be covered with insulation.

Refer to ACI 207.4R "Cooling and Insulating Systems for Mass Concrete" for acceptable methods that will be permitted. If embedded pipe is used for post-cooling, the material shall be polyvinyl chloride or polyethylene. The embedded pipe system shall be properly supported, and the Contractor shall subsequently inspect glued joints to ensure they are able to withstand free falling concrete. The embedded pipe system shall be leak tested after inspection of the glued joints, and prior to the concrete placement. The leak test shall be performed at maximum service pressure or higher for a minimum of 15 minutes. All leaks shall be repaired. The embedded pipe cooling water may be from natural sources such as streams and rivers, but shall be filtered to prevent system stoppages. When the embedded pipe is no longer needed, the surface connections to the pipe shall be removed to a depth of 4 in. (100 mm) below the surface of the concrete. The remaining pipe shall be

completely filled with grout. The 4 in. (100 mm) deep concrete hole shall be filled with nonshrink grout. Form and insulation removal shall be done in a manner to prevent cracking and ensure the maximum temperature differential is maintained. Insulation shall be in good condition as determined by the Engineer and properly attached.

(5) Dimensions of each concrete pour, location of construction joints, placement operations, pour pattern, lift heights, and time delays between lifts.

Refer to ACI 207.1R "Guide to Mass Concrete" for acceptable placement operations that will be permitted.

(6) Type of temperature monitoring system, the number of temperature sensors, and location of sensors.

A minimum of two independent temperature monitoring systems and corresponding sensors shall be used.

The temperature monitoring system shall have a minimum temperature range of 32 °F (0 °C) to 212 °F (100 °C), an accuracy of ± 2 °F (± 1 °C), and be able to automatically record temperatures without external power. Temperature monitoring shall begin once the sensor is encased in concrete, and with a maximum interval of one hour. Temperature monitoring may be discontinued after the maximum concrete temperature has been reached, post-cooling is no longer required, and the maximum temperature differential between the internal concrete core and the ambient air temperature does not exceed 35 °F (19 °C). The Contractor has the option to select a higher maximum temperature differential, but the proposed value shall not exceed 50 °F (28 °C). The proposed value shall be justified through a mathematical method.

At a minimum, a temperature sensor shall be located at the theoretical hottest portion of the concrete, normally the geometric center, and at the exterior face that will provide the maximum temperature differential. At the exterior face, the sensor shall be located 2 to 3 in. (50 to 75 mm) from the surface of the concrete. Sensors shall also be located a minimum of 1 in. (25 mm) away from reinforcement, and equidistant between cooling pipes if either applies. A sensor will also be required to measure ambient air temperature. The entrant/exit cooling water temperature for embedded pipe shall also be monitored.

Temperature monitoring results shall be provided to the Engineer a minimum of once each day and whenever requested by the Engineer. The report may be electronic or hard copy. The report shall indicate the location of each sensor, the temperature recorded, and the time recorded. The report shall be for all sensors and shall include ambient air temperature and entrant/exit cooling water temperatures. The temperature data in the report may be provided in tabular or graphical format, and the report shall indicate any corrective actions during the monitoring period. At the completion of the monitoring period, the Contractor shall provide the Engineer a final report that includes all temperature data and corrective actions.

- (7) Indicate contingency operations to be used if the maximum temperature or temperature differential of the concrete is reached after placement.
- (c) Temperature Restriction Violations. If the maximum temperature of the concrete after placement exceeds 150 °F (66 °C), but is equal to or less than 158 °F (70 °C), the concrete will be accepted if no cracking or other unacceptable defects are identified. If cracking or unacceptable defects are identified, Article 105.03 shall apply. If the concrete temperature exceeds 158 °F (70 °C), Article 105.03 shall apply.

If a temperature differential between the internal concrete core and concrete 2 to 3 in. (50 to 75 mm) from the exposed surface exceeds the specified or proposed maximum value allowed, the concrete will be accepted if no cracking or other unacceptable defects are identified. If unacceptable defects are identified, Article 105.03 shall apply.

When the maximum 150 °F (66 °C) concrete temperature or the maximum allowed temperature differential is violated, the Contractor shall implement corrective action prior to the next pour. In addition, the Engineer reserves the right to request a new thermal control plan for acceptance before the Contractor is allowed to pour again.

(d) Inspection and Repair of Cracks. The Engineer will inspect the concrete for cracks after the temperature monitoring is discontinued, and the Contractor shall provide access for the Engineer to do the inspection. A crack may require repair by the Contractor as determined by the Engineer. The Contractor shall be responsible for the repair of all cracks. Protective coat or a concrete sealer shall be applied to a crack less than 0.007 in. (0.18 mm) in width. A crack that is 0.007 in. (0.18 mm) or greater shall be pressure injected with epoxy according to Section 590.

REMOVAL AND DISPOSAL OF REGULATED SUBSTANCES (BDE)

Effective: January 1, 2012 Revised: November 2, 2012

Revise Article 669.01 of the Standard Specifications to read:

"669.01 Description. This work shall consist of the transportation and proper disposal of contaminated soil and water. This work shall also consist of the removal, transportation, and proper disposal of underground storage tanks (UST), their content and associated underground piping to the point where the piping is above the ground, including determining the content types and estimated quantities."

Revise Article 669.08 of the Standard Specifications to read:

"669.08 Contaminated Soil and/or Groundwater Monitoring. The Contractor shall hire a qualified environmental firm to monitor the area containing the regulated substances. The affected area shall be monitored with a photoionization detector (PID) utilizing a lamp of 10.6eV or greater or a flame ionization detector (FID). Any field screen reading on the PID or FID in excess of background levels indicates the potential presence of contaminated material requiring handling as a non-special waste, special waste, or hazardous waste. No excavated soils can be taken to a clean construction and demolition debris (CCDD) facility or an uncontaminated soil fill operation with detectable PID or FID meter readings that are above background. The PID or FID meter shall be calibrated on-site and background level readings taken and recorded daily. All testing shall be done by a qualified engineer/technician. Such testing and monitoring shall be included in the work. The Contractor shall identify the exact limits of removal of non-special waste, special waste, or hazardous waste. All limits shall be approved by the Engineer prior to excavation. The Contractor shall take all necessary precautions.

Based upon the land use history of the subject property and/or PID or FID readings indicating contamination, a soil or groundwater sample shall be taken from the same location and submitted to an approved laboratory. Soil or groundwater samples shall be analyzed for the contaminants of concern, including pH, based on the property's land use history or the parameters listed in the maximum allowable concentration (MAC) for chemical constituents in uncontaminated soil established pursuant to Subpart F of 35 Illinois Administrative Code 1100.605. The analytical results shall serve to document the level of soil contamination. Soil and groundwater samples may be required at the discretion of the Engineer to verify the level of soil and groundwater contamination.

Samples shall be grab samples (not combined with other locations). The samples shall be taken with decontaminated or disposable instruments. The samples shall be placed in sealed containers and transported in an insulated container to the laboratory. The container shall maintain a temperature of 39 °F (4 °C). All samples shall be clearly labeled. The labels shall indicate the sample number, date sampled, location and elevation, and any other observations.

The laboratory shall use analytical methods which are able to meet the lowest appropriate practical quantitation limits (PQL) or estimated quantitation limit (EQL) specified in "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods", EPA Publication No. SW-846 and "Methods for the Determination of Organic Compounds in Drinking Water", EPA, EMSL, EPA-600/4-88/039. For parameters where the specified cleanup objective is below the acceptable detection limit (ADL), the ADL shall serve as the cleanup objective. For other parameters the ADL shall be equal to or below the specified cleanup objective."

Replace the first two paragraphs of Article 669.09 of the Standard Specifications with the following:

"669.09 Contaminated Soil and/or Groundwater Management and Disposal. The management and disposal of contaminated soil and/or groundwater shall be according to the following:

- (a) Soil Analytical Results Exceed Most Stringent MAC. When the soil analytical results indicate that detected levels exceed the most stringent maximum allowable concentration (MAC) for chemical constituents in uncontaminated soil established pursuant to Subpart F of 35 Illinois Administrative Code 1100.605, the soil shall be managed as follows:
 - (1) When analytical results indicate inorganic chemical constituents exceed the most stringent MAC but they are still considered within area background levels by the Engineer, the excavated soil can be utilized within the construction limits as fill, when suitable. Such soil excavated for storm sewers can be placed back into the excavated trench as backfill, when suitable, unless trench backfill is specified. If the soils cannot be utilized within the construction limits, they shall be managed and disposed of off-site as a non-special waste, special waste, or hazardous waste as applicable.
 - (2) When analytical results indicate chemical constituents exceed the most stringent MAC but do not exceed the MAC for a Metropolitan Statistical Area (MSA) County, the excavated soil can be utilized within the construction limits as fill, when suitable, or managed and disposed of off-site as "uncontaminated soil" at a CCDD facility or an uncontaminated soil fill operation within an MSA County provided the pH of the soil is within the range of 6.25 - 9.0, inclusive.
 - (3) When analytical results indicate chemical constituents exceed the most stringent MAC but do not exceed the MAC for an MSA County excluding Chicago, or the MAC within the Chicago corporate limits, the excavated soil can be utilized within the construction limits as fill, when suitable, or managed and disposed of off-site as "uncontaminated soil" at a CCDD facility or an uncontaminated soil fill operation within an MSA County excluding Chicago or within the Chicago corporate limits provided the pH of the soil is within the range of 6.25 - 9.0, inclusive.

- (4) When analytical results indicate chemical constituents exceed the most stringent MAC but do not exceed the MAC for an MSA County excluding Chicago, the excavated soil can be utilized within the construction limits as fill, when suitable, or managed and disposed of off-site as "uncontaminated soil" at a CCDD facility or an uncontaminated soil fill operation within an MSA County excluding Chicago provided the pH of the soil is within the range of 6.25 - 9.0, inclusive.
- (5) When the Engineer determines soil cannot be managed according to Articles 669.09(a)(1) through (a)(4) above, the soil shall be managed and disposed of off-site as a non-special waste, special waste, or hazardous waste as applicable.
- (b) Soil Analytical Results Do Not Exceed Most Stringent MAC. When the soil analytical results indicate that detected levels do not exceed the most stringent MAC but the pH of the soil is less than 6.25 or greater than 9.0, the excavated soil can be utilized within the construction limits or managed and disposed of off-site as "uncontaminated soil" according to Article 202.03. However the excavated soil cannot be taken to a CCDD facility or an uncontaminated soil fill operation.
- (c) Groundwater. When groundwater analytical results indicate the detected levels are above Appendix B, Table E of 35 Illinois Administrative Code 742, the most stringent Tier 1 Groundwater Remediation Objectives for Groundwater Component of the Groundwater Ingestion Route for Class 1 groundwater, the groundwater shall be managed off-site as a special waste.

All groundwater encountered within lateral trenches may be managed within the trench and allowed to infiltrate back into the ground. If the groundwater cannot be managed within the trench it must be removed as a special or hazardous waste. The Contractor is prohibited from managing groundwater within the trench by discharging it through any existing or new storm sewer. The Contractor shall install backfill plugs within the area of groundwater contamination.

One backfill plug shall be placed down gradient to the area of groundwater contamination. Backfill plugs shall be installed at intervals not to exceed 50 ft (15 m). Backfill plugs are to be 4 ft (1.2 m) long, measured parallel to the trench, full trench width and depth. Backfill plugs shall not have any fine aggregate bedding or backfill, but shall be entirely cohesive soil or any class of concrete. The Contractor shall provide test data that the material has a permeability of less than 10⁻⁷ cm/sec according to ASTM D 5084, Method A or per another test method approved by the Engineer."

Revise Article 669.14 of the Standard Specifications to read:

"669.14 Final Environmental Construction Report. At the end of the project, the Contractor will prepare and submit three copies of the Environmental Construction Report on the activities conducted during the life of the project, one copy shall be submitted to the Resident Engineer, one copy shall be submitted to the District's Environmental Studies Unit, and one copy shall be submitted with an electronic copy in Adode.pdf format to the Geologic

and Waste Assessment Unit, Bureau of Design and Environment, IDOT, 2300 South Dirksen Parkway, Springfield, Illinois 62764. The technical report shall include all pertinent information regarding the project including, but not limited to:

- (a) Measures taken to identify, monitor, handle, and dispose of soil or groundwater containing regulated substances, to prevent further migration of regulated substances, and to protect workers,
- (b) Cost of identifying, monitoring, handling, and disposing of soil or groundwater containing regulated substances, the cost of preventing further migration of regulated substances, and the cost for worker protection from the regulated substances. All cost should be in the format of the contract pay items listed in the contract plans (identified by the preliminary environmental site investigation (PESA) site number),
- (c) Plan sheets showing the areas containing the regulated substances,
- (d) Field sampling and testing results used to identify the nature and extent of the regulated substances,
- (e) Waste manifests (identified by the preliminary environmental site investigation (PESA) site number) for special or hazardous waste disposal, and
- (f) Landfill tickets (identified by the preliminary environmental site investigation (PESA) site number) for non-special waste disposal."

Revise the second paragraph of Article 669.16 of the Standard Specifications to read:

"The transportation and disposal of soil and other materials from an excavation determined to be contaminated will be paid for at the contract unit price per cubic yard (cubic meter) for NON-SPECIAL WASTE DISPOSAL, SPECIAL WASTE DISPOSAL, or HAZARDOUS WASTE DISPOSAL."

REMOVAL AND DISPOSAL OF SURPLUS MATERIALS (BDE)

Effective: November 2, 2012

Revise the first four paragraphs of Article 202.03 of the Standard Specifications to read:

"202.03 Removal and Disposal of Surplus, Unstable, Unsuitable, and Organic Materials. Suitable excavated materials shall not be wasted without permission of the Engineer. The Contractor shall dispose of all surplus, unstable, unsuitable, and organic materials, in such a manner that public or private property will not be damaged or endangered.

Suitable earth, stones and boulders naturally occurring within the right-of-way may be placed in fills or embankments in lifts and compacted according to Section 205. Broken concrete without protruding metal bars, bricks, rock, stone, reclaimed asphalt pavement with no expansive aggregate, or uncontaminated dirt and sand generated from construction or demolition activities may be used in embankment or in fill. If used in fills or embankments, these materials shall be placed and compacted to the satisfaction of the Engineer; shall be buried under a minimum of 2 ft (600 mm) of earth cover (except when the materials include only uncontaminated dirt); and shall not create an unsightly appearance or detract from the natural topographic features of an area. Broken concrete without protruding metal bars, bricks, rock, or stone may be used as riprap as approved by the Engineer. If the materials are used for fill in locations within the right-of-way but outside project construction limits, the Contractor must specify to the Engineer, in writing, how the landscape restoration of the fill areas will be accomplished. Placement of fill in such areas shall not commence until the Contractor's landscape restoration plan is approved by the Engineer.

Aside from the materials listed above, all other construction and demolition debris or waste shall be disposed of in a licensed landfill, recycled, reused, or otherwise disposed of as allowed by State or Federal laws and regulations. When the Contractor chooses to dispose of uncontaminated soil at a clean construction and demolition debris (CCDD) facility or at an uncontaminated soil fill operation, it shall be the Contractor's responsibility to have the pH of the material tested to ensure the value is between 6.25 and 9.0, inclusive. A copy of the pH test results shall be provided to the Engineer.

A permit shall be obtained from IEPA and made available to the Engineer prior to open burning of organic materials (i.e., plant refuse resulting from pruning or removal of trees or shrubs) or other construction or demolition debris. Organic materials originating within the right-of-way limits may be chipped or shredded and placed as mulch around landscape plantings within the right-of-way when approved by the Engineer. Chipped or shredded material to be placed as mulch shall not exceed a depth of 6 in. (150 mm)."

SUBCONTRACTOR MOBILIZATION PAYMENTS (BDE)

Effective: April 2, 2005 Revised: April 1, 2011

To account for the preparatory work and operations necessary for the movement of subcontractor personnel, equipment, supplies, and incidentals to the project site and for all other work or operations that must be performed or costs incurred when beginning work approved for subcontracting according to Article 108.01 of the Standard Specifications, the Contractor shall make a mobilization payment to each subcontractor.

This mobilization payment shall be made at least 14 days prior to the subcontractor starting work. The amount paid shall be equal to 3 percent of the amount of the subcontract reported on form BC 260A submitted for the approval of the subcontractor's work.

The mobilization payment to the subcontractor is an advance payment of the reported amount of the subcontract and is not a payment in addition to the amount of the subcontract; therefore, the amount of the advance payment will be deducted from future progress payments.

This provision shall be incorporated directly or by reference into each subcontract approved by the Department.

SYNTHETIC FIBERS IN CONCRETE GUTTER, CURB, MEDIAN, AND PAVED DITCH (BDE)

Effective: November 1, 2012

Add the following to Article 606.02 of the Standard Specifications.

Note 1. Synthetic fibers may be used in the concrete mixture for slipform applications. Synthetic fibers shall be Type III according to ASTM C 1116. The synthetic fiber shall have a minimum length of 1/2 in. (13 mm) and a maximum length of 0.75 in. (19 mm).

The synthetic fibers shall be added to the concrete and mixed per the manufacturer's recommendation. The maximum dosage rate in the concrete mixture shall be 1.5 lb/cu yd (0.9 kg/cu m).

The Department will maintain an "Approved List of Synthetic Fibers"."

Revise the second paragraph of Article 606.11 of the Standard Specifications to read:

"Forms shall be removed within 24 hours after the concrete has been placed, and minor defects shall be filled with grout consisting of one part cement and two parts sand mixed with water."

TRAFFIC CONTROL DEFICIENCY DEDUCTION (BDE)

Effective: August 1, 2011

Revise the third sentence of the third paragraph of Article 105.03(b) of the Standard Specifications to read:

"The daily monetary deduction will be \$2,500."

The minimum length and type of training for each classification will be as established in the training program selected by the contractor and approved by the Illinois Department of Transportation and the Federal Highway Administration. The Illinois Department of Transportation and the Federal Highway Administration shall approve a program, if it is reasonably calculated to meet the equal employment opportunity obligations of the contractor and to gualify the average trainee for journeyman status in the classification concerned by the end of the training period. Furthermore, apprenticeship programs registered with the U.S. Department of Labor, Bureau of Apprenticeship and Training, or with a State apprenticeship agency recognized by the Bureau and training programs approved by not necessarily sponsored by the U.S. Department of Labor, Manpower Administration, Bureau of Apprenticeship and Training shall also be considered acceptable provided it is being administered in a manner consistent with the equal employment obligations of Federal-aid highway construction contracts. Approval or acceptance of a training program shall be obtained from the State prior to commencing work on the classification covered by the program. It is the intention of these provisions that training is to be provided in the construction crafts rather then clerk-typists or secretarial-type positions. Training is permissible in lower level management positions such as office engineers, estimators, timekeepers, etc., where the training is oriented toward construction applications. Training in the laborer classification may be permitted provided that significant and meaningful training is provided and approved by the Illinois Department of Transportation and the Federal Highway Administration. Some offsite training is permissible as long as the training is an integral part of an approved training program and does not comprise a significant part of the overall training.

Except as otherwise noted below, the contractor will be reimbursed 80 cents per hour of training given an employee on this contract in accordance with an approved training program. As approved by the Engineer, reimbursement will be made for training of persons in excess of the number specified herein. This reimbursement will be made even though the contractor receives additional training program funds from other sources, provided such other source does not specifically prohibit the contractor from receiving other reimbursement. Reimbursement for offsite training indicated above may only be made to the contractor where he does one or more of the following and the trainees are concurrently employed on a Federal-aid project; contributes to the cost of the training, provides the instruction to the trainee or pays the trainee's wages during the offsite training period.

No payment shall be made to the contractor if either the failure to provide the required training, or the failure to hire the trainee as a journeyman, is caused by the contractor and evidences a lack of good faith on the part of the contractor in meeting the requirement of this Training Special Provision. It is normally expected that a trainee will begin his training on the project as soon as feasible after start of work utilizing the skill involved and remain on the project as long as training opportunities exist in his work classification or until he has completed his training program.

It is not required that all trainees be on board for the entire length of the contract. A contractor will have fulfilled his responsibilities under this Training Special Provision if he has provided acceptable training to the number of trainees specified. The number trained shall be determined on the basis of the total number enrolled on the contract for a significant period.

Trainees will be paid at least 60 percent of the appropriate minimum journeyman's rate specified in the contract for the first half of the training period, 75 percent for the third quarter of the training period, and 90 percent for the last quarter of the training period, unless apprentices or trainees in an approved existing program are enrolled as trainees on this project. In that case, the appropriate rates approved by the Departments of Labor or Transportation in connection with the existing program shall apply to all trainees being trained for the same classification who are covered by this Training Special Provision.

The contractor shall furnish the trainee a copy of the program he will follow in providing the training. The contractor shall provide each trainee with a certification showing the type and length of training satisfactorily complete.

The contractor will provide for the maintenance of records and furnish periodic reports documenting his performance under this Training Special Provision.

<u>METHOD OF MEASUREMENT</u> The unit of measurement is in hours.

<u>BASIS OF PAYMENT</u> This work will be paid for at the contract unit price of 80 cents per hour for TRAINEES. The estimated total number of hours, unit price and total price have been included in the schedule of prices.

WEEKLY DBE TRUCKING REPORTS (BDE)

Effective: June 2, 2012

The Contractor shall provide a weekly report of Disadvantaged Business Enterprise (DBE) trucks hired by the Contractor or subcontractors (i.e. not owned by the Contractor or subcontractors) that are used on the jobsite; or used for the delivery and/or removal of equipment/material to and from the jobsite. The jobsite shall also include offsite locations, such as plant sites or storage sites, when those locations are used solely for this contract.

The report shall be submitted on the form provided by the Department within ten business days following the reporting period. The reporting period shall be Monday through Sunday for each week reportable trucking activities occur. The report shall be submitted to the Engineer and a copy shall be provided to the district EEO Officer.

Any costs associated with providing weekly DBE trucking reports shall be considered as included in the contract unit prices bid for the various items of work involved and no additional compensation will be allowed.

WORKING DAYS (BDE)

Effective: January 1, 2002

The Contractor shall complete the work within

working days.